hide
Free keywords:
-
Abstract:
In the present paper we propose nonlinear femtosecond x-ray pump-probe spectroscopy to study the vibrational dynamics of a core-excited molecular state and discuss numerical results in CO. A femtosecond pump resonantly excites the carbon core-excited 1s−1π∗ state of the CO molecule. A second strong probe (control) pulse is applied at variable delay and is resonantly coupled to a valence excited state of the molecule. The strong nonlinear coupling of the control pulse induces Rabi flopping between the two electronic states. During this process, a vibrational wave packet in the core-excited state is created, which can be effectively manipulated by changing the time delay between pump and control pulses. We present an analysis of the resonant Auger electron spectrum and the transient absorption or emission spectrum on the pump transition and discuss their information content for reconstruction of the vibrational wave packet.