English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Spike-timing dependent plasticity changes responses of cortical neurons from sub- to supra-threshold in vivo

Pawlak, V., Greenberg, D., Sprekeler, H., Gerstner, W., & Kerr, J. (2012). Spike-timing dependent plasticity changes responses of cortical neurons from sub- to supra-threshold in vivo. Poster presented at 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012), New Orleans, LA, USA.

Item is

Files

show Files

Creators

show
hide
 Creators:
Pawlak, V1, 2, 3, Author              
Greenberg, DS1, 2, 3, Author              
Sprekeler, H, Author
Gerstner, W, Author
Kerr, JND1, 2, 3, Author              
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528697              
3Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497807              

Content

show
hide
Free keywords: -
 Abstract: A broad range of visual stimuli generate synaptic input to visual cortex neurons, whereas only a small selection of stimuli generates action potential output from the neuron, that informs downstream targets of the sensory event - but whether plasticity rules can predictably change the spiking response of a neuron by changing a subthreshold response into a suprathreshold response, although proposed, is unclear. Here, we show that a brief spike-timing dependent plasticity (STDP) protocol consisting of close timing of postsynaptic action potentials (APs) and presynaptic inputs derived from visual stimulation can convert subthreshold responses into suprathreshold responses and restructure the neuron's suprathreshold receptive field. This reorganization of spiking responses was paralleled by a change in the time course of the subthreshold voltages and was abolished when muscarinic acetylcholine receptors were blocked. Computational simulations, based on in vitro STDP data, could reproduce the subthreshold membrane potential changes reported here, only when temporal jitter, based on in vivo data, was included during pairing at the presynaptic input stage. Together this shows that timing based plasticity rules, using 10’s postsynaptic spikes, has a functional impact on the spiking response patterns of sensory neurons in vivo by changing suprathreshold tuning properties of the visual cortex neurons.

Details

show
hide
Language(s):
 Dates: 2012-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012)
Place of Event: New Orleans, LA, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 42nd Annual Meeting of the Society for Neuroscience (Neuroscience 2012)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 572.01 Start / End Page: - Identifier: -