ausblenden:
Schlagwörter:
-
Zusammenfassung:
Heterostructural core–shell quantum dots (hetero-QDs) have garnered a copious amount of research effort for not only scientific advances but also a range of technological applications. Particularly, controlling the heteroshell deposition, which in turn determines the particle morphology, is vital in regulating the photophysical properties and the application potential of the hetero-QDs. In this work, we present the first report on a synthesis of pyramidal shaped (i.e., hexagonal pyramid, HP, and hexagonal bipyramid, HBP) CdSe-CdS hetero-QDs with high morphological uniformity and epitaxial crystallinity through a two-step shell growth method. The stabilization of the exposed (0002) and {101̅1} facets by octadecylphosphonic acid and oleic acid ligands, respectively, is the key for the formation of pyramidal particle shapes. High photoluminescence quantum yield (94%, HP-QDs and 73%, HBP-QDs), minimal inhomogeneous PL line width broadening, and significantly suppressed single-QD blinking are observed. Specifically, the “giant” HBP-QDs showed an average “On” time fraction of 96% with more than 50% of measured particles completely nonblinking. Additionally, high multiexciton emission, prolonged ensemble and single-QD PL lifetimes as compared to their spherical counterparts are also reported. Finally, the HBP-QDs have been successfully transferred into an aqueous solution without aggregation. High cellular uptakes associated with low cytotoxicity render these water-soluble HBP-QDs an excellent candidate for intracellular imaging and labeling.