English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory

Sato, S., Hübener, H., Rubio, A., & de Giovannini, U. (2018). First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory. European Physical Journal B, 91(6): 126. doi:10.1140/epjb/e2018-90108-7.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-AC54-F Version Permalink: http://hdl.handle.net/21.11116/0000-0003-A4BA-2
Genre: Journal Article

Files

show Files
hide Files
:
Sato2018_Article_First-principlesSimulationsFor.pdf (Publisher version), 839KB
Name:
Sato2018_Article_First-principlesSimulationsFor.pdf
Description:
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2018
Copyright Info:
© the Author(s)

Locators

show
hide
Locator:
https://dx.doi.org/10.1140/epjb/e2018-90108-7 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Sato, S.1, 2, Author              
Hübener, H.1, 2, Author              
Rubio, A.1, 2, 3, 4, Author              
de Giovannini, U.1, 2, Author              
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Center for Free-Electron Laser Science, ou_persistent22              
3Center for Computational Quantum Physics (CCQ), The Flatiron Institute, ou_persistent22              
4Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del Pa ́ıs Vasco UPV/EHU, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We develop a first-principles simulation method for attosecond time-resolved photoelectron spectroscopy. This method enables us to directly simulate the whole experimental processes, including excitation, emission and detection on equal footing. To examine the performance of the method, we use it to compute the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) experiments of gas-phase Argon. The computed RABBITT photoionization delay is in very good agreement with recent experimental results from [Klünder et al., Phys. Rev. Lett. 106, 143002 (2011)] and [Guénot et al., Phys. Rev. A 85, 053424 (2012)]. This indicates the significance of a fully-consistent theoretical treatment of the whole measurement process to properly describe experimental observables in attosecond photoelectron spectroscopy. The present framework opens the path to unravel the microscopic processes underlying RABBITT spectra in more complex materials and nanostructures.

Details

show
hide
Language(s): eng - English
 Dates: 2018-04-092018-03-012018-06-222018-06-22
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1140/epjb/e2018-90108-7
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : We thank L. Gallmann for carefully reading the manuscript and providing valuable comments. We thank U. Keller for helpful discussions and insight into this problem. We acknowledge financial support from the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT578-13) and the European Union’s Horizon 2020 Research and Innovation program under Grant Agreements no. 676580 (NOMAD). S.A.S. acknowledges support by Alexander von Humboldt Foundation. Open access funding provided by Max Planck Society.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: European Physical Journal B
  Other : Eur. Phys. J. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-Verlag Heidelberg
Pages: - Volume / Issue: 91 (6) Sequence Number: 126 Start / End Page: - Identifier: ISSN: 1434-6028
CoNE: /journals/resource/954927001233