English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires

Hohenwarter, A., Völker, B., Kapp, M. W., Li, Y., Goto, S., Raabe, D., et al. (2016). Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires. Scientific Reports, 6: 33228. doi:10.1038/srep33228.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-B219-A Version Permalink: http://hdl.handle.net/21.11116/0000-0001-B21A-9
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hohenwarter, A.1, Author              
Völker, Bernhard2, Author              
Kapp, Marlene W.3, Author              
Li, Yujiao4, Author              
Goto, Shoji5, 6, Author              
Raabe, Dierk7, Author              
Pippan, Reinhard8, Author              
Affiliations:
1Department of Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, Leoben, Austria, persistent22              
2Department of Materials Physics, Montanuniversität Leoben, Austria, ou_persistent22              
3Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben, Austria, ou_persistent22              
4Alloy Design and Thermomechanical Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
5Materials Science of Mechanical Contracts, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2324693              
6Akita University, Tegata Gakuencho, Akita 010-8502, Japan, ou_persistent22              
7Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
8Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department Material Physics, Leoben, Austria, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Structural materials used for safety critical applications require high strength and simultaneously high resistance against crack growth, referred to as damage tolerance. However, the two properties typically exclude each other and research efforts towards ever stronger materials are hampered by drastic loss of fracture resistance. Therefore, future development of novel ultra-strong bulk materials requires a fundamental understanding of the toughness determining mechanisms. As model material we use today's strongest metallic bulk material, namely, a nanostructured pearlitic steel wire, and measured the fracture toughness on micron-sized specimens in different crack growth directions and found an unexpected strong anisotropy in the fracture resistance. Along the wire axis the material reveals ultra-high strength combined with so far unprecedented damage tolerance. We attribute this excellent property combination to the anisotropy in the fracture toughness inducing a high propensity for micro-crack formation parallel to the wire axis. This effect causes a local crack tip stress relaxation and enables the high fracture toughness without being detrimental to the material's strength. © 2016 The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2016-09-14
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/srep33228
BibTex Citekey: Hohenwarter2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Scientific Reports
  Abbreviation : Sci. Rep.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Publishing Group
Pages: - Volume / Issue: 6 Sequence Number: 33228 Start / End Page: - Identifier: ISSN: 2045-2322
CoNE: /journals/resource/2045-2322