Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Solute strengthening at high temperatures

Leyson, G., & Curtin, W. A. (2016). Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering, 24(6): 065005. doi:10.1088/0965-0393/24/6/065005.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Leyson, Gerard1, Autor           
Curtin, W. A.2, Autor           
Affiliations:
1Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863339              
2Institute of Mechanical Engineering, Êcole Polytechnique Fédéral de Lausanne, Lausanne, Switzerland, persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Copper alloys; Dislocations (crystals); Energy barriers; Road construction; Strain rate, High temperature; High temperature behavior; Intermediate temperatures; Power law scalings; Predictive modeling; Solute strengthening; Solution strengthening; Zero temperatures, Temperature
 Zusammenfassung: The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier δE(τ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of δE(τ). The new model predicts that the wellestablished low-temperature, with energy barrier δEb and zero temperature flow stress τy0, transitions to a near-logarithmic form for stresses in the regime 0.2τ/τ y0 τ ≤ 0.5 and then transitions to a power-law form at even lower stresses τ/τ y0lt;0.03. δEb and τ y0 remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediatetemperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility. © 2016 IOP Publishing Ltd.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1088/0965-0393/24/6/065005
BibTex Citekey: Leyson2016
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Modelling and Simulation in Materials Science and Engineering
  Kurztitel : Modelling Simul. Mater. Sci. Eng
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : IOP Pub.
Seiten: - Band / Heft: 24 (6) Artikelnummer: 065005 Start- / Endseite: - Identifikator: ISSN: 0965-0393
CoNE: https://pure.mpg.de/cone/journals/resource/954925581155