English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics

Sangiovanni, D. G., Hellman, O., Alling, B., & Abrikosov, I. A. (2016). Efficient and accurate determination of lattice-vacancy diffusion coefficients via non equilibrium ab initio molecular dynamics. Physical Review B, 93(9): 094305. doi:10.1103/PhysRevB.93.094305.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Sangiovanni, D. G.1, Author           
Hellman, Olle2, Author           
Alling, Björn3, 4, Author           
Abrikosov, Igor A.5, 6, 7, Author           
Affiliations:
1Department of Physics Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden, persistent22              
2Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden, ou_persistent22              
3Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863339              
4Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, Linköping, Sweden, ou_persistent22              
5Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden, ou_persistent22              
6Materials Modeling and Development Laboratory, National University of Science and Technology “MISIS”, 119049 Moscow, Russia, ou_persistent22              
7LACOMAS Laboratory, Tomsk State University, Tomsk, Russia, persistent22              

Content

show
hide
Free keywords: -
 Abstract: We revisit the color-diffusion algorithm [Aeberhard, Phys. Rev. Lett. 108, 095901 (2012)10.1103/PhysRevLett.108.095901] in non equilibrium ab initio molecular dynamics (NE-AIMD) and propose a simple efficient approach for the estimation of monovacancy jump rates in crystalline solids at temperatures well below melting. Color-diffusion applied to monovacancy migration entails that one lattice atom (colored atom) is accelerated toward the neighboring defect site by an external constant force F. Considering bcc molybdenum between 1000 and 2800 K as a model system, NE-AIMD results show that the colored-atom jump rate kNE increases exponentially with the force intensity F, up to F values far beyond the linear-fitting regime employed previously. Using a simple model, we derive an analytical expression which reproduces the observed kNE(F) dependence on F. Equilibrium rates extrapolated by NE-AIMD results are in excellent agreement with those of unconstrained dynamics. The gain in computational efficiency achieved with our approach increases rapidly with decreasing temperatures and reaches a factor of 4 orders of magnitude at the lowest temperature considered in the present study. © 2016 American Physical Society.

Details

show
hide
Language(s): eng - English
 Dates: 2016-03-21
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevB.93.094305
BibTex Citekey: Sangiovanni2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 93 (9) Sequence Number: 094305 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008