English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations

Thore, A., Dahlqvist, M., Alling, B., & Rosén, J. A. (2016). Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations. Physical Chemistry Chemical Physics, 18(18), 12682-12688. doi:10.1039/c6cp00802j.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-BA2B-E Version Permalink: http://hdl.handle.net/21.11116/0000-0001-BA2C-D
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Thore, A.1, Author              
Dahlqvist, Martin1, Author              
Alling, Björn2, 3, Author              
Rosén, Johanna A.4, Author              
Affiliations:
1Department of Physics, Chemistry and Biology, Thin Film Physics Division, Linköping University, Linköping, Sweden, persistent22              
2Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863339              
3Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, Linköping, Sweden, ou_persistent22              
4Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, Sweden, persistent22              

Content

show
hide
Free keywords: -
 Abstract: We here use first-principles calculations to investigate the phase stability of the hypothetical laminated material V2Ga2C and the related alloy (Mo1-xVx)2Ga2C, the latter for a potential parent material for synthesis of (Mo1-xVx)2C, a new two-dimensional material in the family of so called MXenes. We predict that V2Ga2C is thermodynamically stable with respect to all identified competing phases in the ternary V-Ga-C phase diagram. We further calculate the stability of ordered and disordered configurations of Mo and V in (Mo1-xVx)2Ga2C and predict that ordered (Mo1-xVx)2Ga2C for x ≤ 0.25 is stable, with an order-disorder transition temperature of ∼1000 K. Furthermore, (Mo1-xVx)2Ga2C for x = 0.5 and x ≥ 0.75 is suggested to be stable, but only for disordered Mo-V configurations, and only at elevated temperatures. We have also investigated the electronic and elastic properties of V2Ga2C; the calculated bulk, shear, and Young's modulus are 141, 94, and 230 GPa, respectively. © 2016 the Owner Societies.

Details

show
hide
Language(s): eng - English
 Dates: 2016
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1039/c6cp00802j
BibTex Citekey: Thore201612682
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Chemistry Chemical Physics
  Abbreviation : Phys. Chem. Chem. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, England : Royal Society of Chemistry
Pages: - Volume / Issue: 18 (18) Sequence Number: - Start / End Page: 12682 - 12688 Identifier: ISSN: 1463-9076
CoNE: /journals/resource/954925272413_1