English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal

Stoffers, A., Ziebarth, B., Barthel, J., Cojocaru-Mirédin, O., Elsässer, C., & Raabe, D. (2015). Complex Nanotwin Substructure of an Asymmetric Σ9 Tilt Grain Boundary in a Silicon Polycrystal. Physical Review Letters, 115(23): 235502. doi:10.1103/PhysRevLett.115.235502.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Stoffers, Andreas1, Author           
Ziebarth, Benedikt2, 3, Author           
Barthel, Juri4, 5, Author           
Cojocaru-Mirédin, Oana1, Author           
Elsässer, Christian6, Author           
Raabe, Dierk7, Author           
Affiliations:
1Interface Design in Solar Cells, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863387              
2Fraunhofer-Institut für Werkstoffmechanik IWM, Wöhlerstraße 11, Freiburg, Germany, persistent22              
3Karlsruher Institut für Technologie, Institut für Angewandte Materialien (IAM-CMS), Engelbert-Arnold-Straße 4, Karlsruhe, Germany, persistent22              
4Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany, persistent22              
5Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraβe 55, 52074 Aachen, Germany, persistent22              
6Fraunhofer-Institut für Werkstoffmechanik IWM, Wöhlerstr. 11, 79108 Freiburg, Germany, ou_persistent22              
7Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: Calculations; Carrier lifetime; Grain boundaries; High resolution transmission electron microscopy; Mechanical stability; Scanning electron microscopy; Silicon; Silicon solar cells; Structural optimization; Transmission electron microscopy, Asymmetric interface; First-principles calculation; Grain-boundary energy; High resolution scanning transmission electron microscopies; Interface structures; Local atomic structures; Minority carrier lifetimes; Multi-crystalline silicon solar cells, Crystal atomic structure
 Abstract: Grain boundaries in materials have substantial influences on device properties, for instance on mechanical stability or electronic minority carrier lifetime in multicrystalline silicon solar cells. This applies especially to asymmetric, less ordered or faceted interface portions. Here, we present the complex atomic interface structure of an asymmetric Σ9 tilt grain boundary in silicon, observed by high resolution scanning transmission electron microscopy (HR-STEM) and explained by atomistic modeling and computer simulation. Structural optimization of interface models for the asymmetric Σ9 and related symmetrical Σ9 and Σ3 tilt grain boundaries, by means of molecular-statics simulations with empirical silicon potentials in combination with first-principles calculations, results in a faceted asymmetric interface structure, whose grain-boundary energy is so low that it is likely to exist. The simulated local atomic structures match the observed HR-STEM images very well. © 2015 American Physical Society.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevLett.115.235502
BibTex Citekey: Stoffers2015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Abbreviation : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, N.Y. : American Physical Society
Pages: - Volume / Issue: 115 (23) Sequence Number: 235502 Start / End Page: - Identifier: ISSN: 0031-9007
CoNE: https://pure.mpg.de/cone/journals/resource/954925433406_1