English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Effect of grain refinement by ECAP on creep of pure Cu

Blum, W., Dvořák, J., Král, P. T. K., Eisenlohr, P., & Sklenička, V. (2014). Effect of grain refinement by ECAP on creep of pure Cu. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 590, 423-432. doi:10.1016/j.msea.2013.10.022.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Blum, Wolfgang1, Author           
Dvořák, Jiří2, Author           
Král, Petr Toman Karel2, Author           
Eisenlohr, Philip3, Author           
Sklenička, Váčlav2, Author           
Affiliations:
1Institut für Werkstoffwissenschaften, University of Erlangen-Nürnberg, Martensstr. 5, D-91058 Erlangen, Germany, persistent22              
2Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ 61662 Brno, Czech Republic, persistent22              
3MPG-FhG Computational Mechanics of Polycrystals Group, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863389              

Content

show
hide
Free keywords: Deformation resistance; ECAP; High angle boundaries; Microcrystalline structures; Quasi-stationary; Static recrystallization; Tension and compression; Test temperatures, Copper; Ductility; Grain refinement; Recrystallization (metallurgy); Strain hardening; Thermomechanical treatment, Creep
 Abstract: The creep behavior of pure, initially coarse-grained Cu of 99.99 purity was investigated at a temperature of 473K in tension and compression in dependence on predeformation by ECAP (route BC) at ambient temperature. Static recrystallization during heating to test temperature generates a microcrystalline structure; its homogeneity increases with increasing ECAP-predeformation. The high-angle boundaries are sufficiently closely spaced to exert a significant influence on work hardening and quasi-stationary deformation where generation and loss of free dislocations are at approximate balance. This influence is quantitatively interpreted in terms of control of deformation resistance shifting from low- to high-angle boundaries as predeformation increases and creep stress decreases. The microcrystalline structure created by the thermomechanical treatment consisting of ECAP and static recrystallization leads to favorable combination of relatively high creep resistance and high ductility at 473K with fracture strains in the order of 0.5. © 2013 Elsevier B.V.

Details

show
hide
Language(s): eng - English
 Dates: 2014-01-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.msea.2013.10.022
BibTex Citekey: Blum2014423
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing
  Abbreviation : Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Elsevier
Pages: - Volume / Issue: 590 Sequence Number: - Start / End Page: 423 - 432 Identifier: ISSN: 0921-5093
CoNE: https://pure.mpg.de/cone/journals/resource/954928498465_1