English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes

Hemzalová, P., Friák, M., Šob, M., Ma, D., Udyansky, A., Raabe, D., et al. (2013). Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes. Physical Review B, 88(17): 174103. doi:10.1103/PhysRevB.88.174103.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hemzalová, Pavlína1, 2, 3, Author           
Friák, Martin1, 4, 5, Author           
Šob, Mojmír3, 6, 7, Author           
Ma, Duancheng8, Author           
Udyansky, Alexander1, Author           
Raabe, Dierk9, Author           
Neugebauer, Jörg10, Author           
Affiliations:
1Ab Initio Thermodynamics, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863338              
2Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic, ou_persistent22              
3Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic, ou_persistent22              
4CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic, ou_persistent22              
5Institute of Physics of Materials, Academy of Sciences of the Czech Republic, V.v.i. Brno, Czech Republic, ou_persistent22              
6Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, ou_persistent22              
7Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, ou_persistent22              
8Theory and Simulation, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863392              
9Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
10Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              

Content

show
hide
Free keywords: -
 Abstract: We have employed parameter-free density functional theory calculations to study the thermodynamic stability and structural parameters as well as elastic and electronic properties of Ni4N in eight selected crystallographic phases. In agreement with the experimental findings, the cubic structure with Pearson symbol cP5, space group Pm3̄m (221) is found to be the most stable and it is also the only thermodynamically stable structure at T=0 K with respect to decomposition to the elemental Ni crystal and N2 gas phase. We determine structural parameters, bulk moduli, and their pressure derivatives for all eight allotropes. The thermodynamic stability and bulk modulus is shown to be anticorrelated. Comparing ferromagnetic and nonmagnetic states, we find common features between the magnetism of elemental Ni and studied ferromagnetic Ni4N structures. For the ground-state Ni4N structure and other two Ni4N cubic allotropes, we predict a complete set of single-crystalline elastic constants (in the equilibrium and under hydrostatic pressure), the Young and area moduli, as well as homogenized polycrystalline elastic moduli obtained by different homogenization methods. We demonstrate that the elastic anisotropy of the ground-state Ni4N is qualitatively opposite to that in the elemental Ni, i.e., these materials have hard and soft crystallographic directions interchanged. Moreover, one of the studied metastable cubic phases is found auxetic, i.e., exhibiting negative Poisson ratio. © 2013 American Physical Society.

Details

show
hide
Language(s): eng - English
 Dates: 2013-11-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevB.88.174103
BibTex Citekey: Hemzalová2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Woodbury, NY : American Physical Society
Pages: - Volume / Issue: 88 (17) Sequence Number: 174103 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008