English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue

Mo, X., Letort, A., Roşca, D.-A., Higashida, K., & Fürstner, A. (2018). Site‐Selective trans‐Hydrostannation of 1,3‐ and 1,n‐Diynes: Application to the Total Synthesis of Typhonosides E and F, and a Fluorinated Cerebroside Analogue. Chemistry – A European Journal, 24(38), 9667-9674. doi:10.1002/chem.201801344.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
[375]SI.pdf (Supplementary material), 13MB
Name:
[375]SI.pdf
Description:
Supporting Information
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Mo, Xiaobin1, Author              
Letort, Aurélien1, Author              
Roşca, Dragoş-Adrian1, Author              
Higashida, Kosuke1, Author              
Fürstner, Alois1, Author              
Affiliations:
1Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445584              

Content

show
hide
Free keywords: alkynes; cooperativity; glycolipids; natural products; organotin compounds; ruthenium; trans-hydrometalation
 Abstract: Propargyl alcohols are privileged substrates for stereochemically unorthodox trans‐hydrostannation reactions catalyzed by [Cp*RuCl]4 (Cp*=pentamethylcyclopentadienyl), because an incipient hydrogen bond between the ‐OH group and the polarized [Ru‐Cl] unit assists substrate binding. For this very reason, it is also possible to subject diyne derivatives carrying one ‐OH group to site‐selective stannylation, even if the acetylene units are conjugated and hence, electronically coupled. An unusual temperature dependence was observed in that heating tends to improve site‐selectivity, whereas per‐stannylation is favored when the reaction is carried out in the cold. This counterintuitive trend can be rationalized based on spectroscopic data; additional support comes from the isolation of the unusual bimetallic complex 11. The bridging fulvene and enynyl ligands in 11 are thought to reflect an interligand redox isomerization process likely triggered by synchronous activation of the 1,3‐diyne substrate by two metal centers. The preparative relevance of site‐selective trans‐hydrostannation is illustrated by the total synthesis of two members of the typhonoside series of glycolipids, which are endowed with neuroprotective properties. Moreover, the preparation of a fluoroalkene sphingosine analogue shows that the tin residue also serves as a versatile handle for late‐stage modification of a bioactive target compound.

Details

show
hide
Language(s): eng - English
 Dates: 2018-03-162018-04-202018-07-05
 Publication Status: Published online
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/chem.201801344
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemistry – A European Journal
  Other : Chem. – Eur. J.
  Other : Chem. Eur. J.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 24 (38) Sequence Number: - Start / End Page: 9667 - 9674 Identifier: ISSN: 0947-6539
CoNE: https://pure.mpg.de/cone/journals/resource/954926979058