English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Significant contribution of non-vascular vegetation to global rainfall interception

Porada, P., Van Stan II, J. T., & Kleidon, A. (2018). Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geoscience, 11, 563-567. doi:10.1038/s41561-018-0176-7.

Item is

Files

show Files
hide Files
:
BGC2880s1.pdf (Supplementary material), 380KB
 
File Permalink:
-
Name:
BGC2880s1.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
BGC2880.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
BGC2880.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Porada, Philipp, Author
Van Stan II, John T. , Author
Kleidon, Axel1, Author           
Affiliations:
1Research Group Biospheric Theory and Modelling, Dr. A. Kleidon, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497761              

Content

show
hide
Free keywords: -
 Abstract: Non-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22% of the terrestrial evaporative flux (compared with only 12% for simulations where interception excludes non-vascular vegetation). We thus conclude that non-vascular vegetation is likely to significantly influence global rainfall interception and evaporation with consequences for regional- to continental-scale hydrologic cycling and climate.

Details

show
hide
Language(s):
 Dates: 20182018-07-232018-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: Other: BGC2880
DOI: 10.1038/s41561-018-0176-7
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Geoscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Publishing Group
Pages: - Volume / Issue: 11 Sequence Number: - Start / End Page: 563 - 567 Identifier: ISSN: 1752-0894
CoNE: https://pure.mpg.de/cone/journals/resource/1752-0894