English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atlantic Ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region

Borchert, L., Müller, W. A., & Baehr, J. (2018). Atlantic Ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region. Journal of Climate, 31, 6763-6782. doi:10.1175/JCLI-D-17-0734.1.

Item is

Files

show Files
hide Files
:
jcli-d-17-0734.1.pdf (Publisher version), 7MB
Name:
jcli-d-17-0734.1.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Borchert, Leonard1, 2, Author           
Müller, Wolfgang A.3, Author           
Baehr, Johanna2, Author           
Affiliations:
1IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society, Bundesstraße 53, 20146 Hamburg, DE, ou_913547              
2CRG Climate System Data Assimilation, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations, ou_2025289              
3Decadal Climate Predictions - MiKlip, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_1479671              

Content

show
hide
Free keywords: -
 Abstract: AbstractAn analysis of a three-member ensemble of initialized coupled simulations with the MPI-ESM-LR covering the period 1901–2010 shows that Atlantic northward ocean heat transport (OHT) at 50°N influences surface temperature variability in the North Atlantic region for several years. Three to ten years after strong OHT phases at 50°N, a characteristic pattern of sea surface temperature (SST) anomalies emerges: warm anomalies are found in the North Atlantic and cold anomalies emerge in the Gulf Stream region. This pattern originates from persistent upper-ocean heat content anomalies that originate from southward-propagating OHT anomalies in the North Atlantic. Interannual-to-decadal SST predictability of yearly initialized hindcasts is linked to this SST pattern: when ocean heat transport at 50°N is strong at the initialization of a hindcast, SST anomaly correlation coefficients in the northeast Atlantic at lead years 2–9 are significantly higher than when the ocean heat transport at 50°N is weak at initialization. Surface heat fluxes that mask the predictable low-frequency oceanic variability that influences SSTs in the northwest Atlantic after strong OHT phases, and in the northwest and northeast Atlantic after weak OHT phases at 50°N lead to zonally asymmetrically predictable SSTs 7–9 years ahead. This study shows that the interannual-to-decadal predictability of North Atlantic SSTs depends strongly on the strength of subpolar ocean heat transport at the start of a prediction, indicating that physical mechanisms need to be taken into account for actual temperature predictions.

Details

show
hide
Language(s): eng - English
 Dates: 2017-102018-052018-07-202018-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1175/JCLI-D-17-0734.1
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Climate
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 31 Sequence Number: - Start / End Page: 6763 - 6782 Identifier: -