English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles

Gorkhover, T., Schorb, S., Coffee, R., Adolph, M., Foucar, L., Rupp, D., et al. (2016). Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nature Photonics, 10(2), 93-98. doi:10.1038/nphoton.2015.264.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-E0C5-3 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-E0C6-2
Genre: Journal Article

Files

show Files
hide Files
:
nphoton.2015.264.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
nphoton.2015.264.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://dx.doi.org/10.1038/nphoton.2015.264 (Publisher version)
Description:
-

Creators

show
hide
 Creators:
Gorkhover, T.1, 2, Author
Schorb, S.1, 2, Author
Coffee, R.1, 3, Author
Adolph, M.2, Author
Foucar, L.4, 5, Author
Rupp, D.2, Author
Aquila, A.1, 6, 7, Author
Bozek, J. D.1, 8, Author
Epp, S. W.4, 9, Author              
Erk, B.4, 9, 10, Author
Gumprecht, L.6, Author
Holmegaard, L.6, 11, Author
Hartmann, A.12, Author
Hartmann, R.12, Author
Hauser, G.13, Author
Holl, P.12, Author
Hömke, A.4, 9, Author
Johnsson, P.14, Author
Kimmel, N.13, Author
Kühnel, K.-U.9, Author
Messerschmidt, M.1, 15, AuthorReich, C.12, AuthorRouzée, A.16, 17, AuthorRudek, B.4, 9, 18, AuthorSchmidt, C.4, 9, AuthorSchulz, J.6, 7, AuthorSoltau, H.12, AuthorStern, S.6, 19, AuthorWeidenspointner, G.13, 20, AuthorWhite, B.1, AuthorKüpper, J.6, 19, AuthorStrüder, L.12, 21, AuthorSchlichting, I.4, 5, AuthorUllrich, J.4, 9, 18, AuthorRolles, D.4, 5, 22, AuthorRudenko, A.4, 8, 22, AuthorMöller, T.2, AuthorBostedt, C.1, 3, 23, 24, Author more..
Affiliations:
1Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, ou_persistent22              
2Institut für Optik und Atomare Physik, Technische Universität Berlin, ou_persistent22              
3PULSE Institute and SLAC National Accelerator Laboratory, ou_persistent22              
4Max Planck Advanced Study Group, Center for Free-Electron Laser Science, ou_persistent22              
5Max-Planck-Institut für medizinische Forschung, ou_persistent22              
6Center for Free-Electron-Laser Science (CFEL), DESY, ou_persistent22              
7European XFEL GmbH, ou_persistent22              
8Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, ou_persistent22              
9Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society, ou_2025284              
10Photon Science DESY, ou_persistent22              
11Department of Chemistry, Aarhus University, ou_persistent22              
12PNSensor GmbH, ou_persistent22              
13Max-Planck-Institut für extraterrestrische Physik, ou_persistent22              
14Department of Physics, Lund University, ou_persistent22              
15National Science Foundation BioXFEL Science and Technology Center, ou_persistent22              
16Max-Born-Institut, ou_persistent22              
17FOM-Institute AMOLF, ou_persistent22              
18Physikalisch-Technische Bundesanstalt (PTB), ou_persistent22              
19Department of Physics and Center for Ultrafast Imaging, University of Hamburg, ou_persistent22              
20Max-Planck-Institut Halbleiterlabor, ou_persistent22              
21Universität Siegen, Emmy-Noether Campus, ou_persistent22              
22J.R. Macdonald Laboratory, Kansas State University, ou_persistent22              
23Argonne National Laboratory, ou_persistent22              
24Department of Physics and Astronomy, Northwestern University, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions1, matter under extreme conditions2, ultrafast phase transitions3 and intense light–matter interactions4. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon4,5. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.

Details

show
hide
Language(s): eng - English
 Dates: 2015-10-192015-11-302016-01-252016-02
 Publication Status: Published in print
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/nphoton.2015.264
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Photonics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 6 Volume / Issue: 10 (2) Sequence Number: - Start / End Page: 93 - 98 Identifier: ISSN: 1749-4885
CoNE: /journals/resource/1000000000240270