Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles

Gorkhover, T., Schorb, S., Coffee, R., Adolph, M., Foucar, L., Rupp, D., et al. (2016). Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nature Photonics, 10(2), 93-98. doi:10.1038/nphoton.2015.264.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
nphoton.2015.264.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
nphoton.2015.264.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://dx.doi.org/10.1038/nphoton.2015.264 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Gorkhover, T.1, 2, Autor
Schorb, S.1, 2, Autor
Coffee, R.1, 3, Autor
Adolph, M.2, Autor
Foucar, L.4, 5, Autor
Rupp, D.2, Autor
Aquila, A.1, 6, 7, Autor
Bozek, J. D.1, 8, Autor
Epp, S. W.4, 9, Autor           
Erk, B.4, 9, 10, Autor
Gumprecht, L.6, Autor
Holmegaard, L.6, 11, Autor
Hartmann, A.12, Autor
Hartmann, R.12, Autor
Hauser, G.13, Autor
Holl, P.12, Autor
Hömke, A.4, 9, Autor
Johnsson, P.14, Autor
Kimmel, N.13, Autor
Kühnel, K.-U.9, Autor
Messerschmidt, M.1, 15, AutorReich, C.12, AutorRouzée, A.16, 17, AutorRudek, B.4, 9, 18, AutorSchmidt, C.4, 9, AutorSchulz, J.6, 7, AutorSoltau, H.12, AutorStern, S.6, 19, AutorWeidenspointner, G.13, 20, AutorWhite, B.1, AutorKüpper, J.6, 19, AutorStrüder, L.12, 21, AutorSchlichting, I.4, 5, AutorUllrich, J.4, 9, 18, AutorRolles, D.4, 5, 22, AutorRudenko, A.4, 8, 22, AutorMöller, T.2, AutorBostedt, C.1, 3, 23, 24, Autor mehr..
Affiliations:
1Linac Coherent Light Source, SLAC National Accelerator Laboratory, Stanford, California 94309, ou_persistent22              
2Institut für Optik und Atomare Physik, Technische Universität Berlin, ou_persistent22              
3PULSE Institute and SLAC National Accelerator Laboratory, ou_persistent22              
4Max Planck Advanced Study Group, Center for Free-Electron Laser Science, ou_persistent22              
5Max-Planck-Institut für medizinische Forschung, ou_persistent22              
6Center for Free-Electron-Laser Science (CFEL), DESY, ou_persistent22              
7European XFEL GmbH, ou_persistent22              
8Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, ou_persistent22              
9Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society, ou_2025284              
10Photon Science DESY, ou_persistent22              
11Department of Chemistry, Aarhus University, ou_persistent22              
12PNSensor GmbH, ou_persistent22              
13Max-Planck-Institut für extraterrestrische Physik, ou_persistent22              
14Department of Physics, Lund University, ou_persistent22              
15National Science Foundation BioXFEL Science and Technology Center, ou_persistent22              
16Max-Born-Institut, ou_persistent22              
17FOM-Institute AMOLF, ou_persistent22              
18Physikalisch-Technische Bundesanstalt (PTB), ou_persistent22              
19Department of Physics and Center for Ultrafast Imaging, University of Hamburg, ou_persistent22              
20Max-Planck-Institut Halbleiterlabor, ou_persistent22              
21Universität Siegen, Emmy-Noether Campus, ou_persistent22              
22J.R. Macdonald Laboratory, Kansas State University, ou_persistent22              
23Argonne National Laboratory, ou_persistent22              
24Department of Physics and Astronomy, Northwestern University, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions1, matter under extreme conditions2, ultrafast phase transitions3 and intense light–matter interactions4. Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon4,5. Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-10-192015-11-302016-01-252016-02
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/nphoton.2015.264
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Photonics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 6 Band / Heft: 10 (2) Artikelnummer: - Start- / Endseite: 93 - 98 Identifikator: ISSN: 1749-4885
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000240270