English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy

Makineni, S. K., Kumar, A., Lenz, M., Kontis, P., Meiners, T., Zenk, C. H., et al. (2018). On the diffusive phase transformation mechanism assisted by extended dislocations during creep of a single crystal CoNi-based superalloy. Acta Materialia, 155, 362-371. doi:10.1016/j.actamat.2018.05.074.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-E633-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-E634-1
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Makineni, Surendra Kumar1, Author              
Kumar, A.2, 3, 4, Author              
Lenz, Malte5, Author              
Kontis, Paraskevas1, Author              
Meiners, Thorsten6, Author              
Zenk, Christopher H.7, Author              
Zaefferer, Stefan8, Author              
Eggeler, Gunther F.9, Author              
Neumeier, Steffen7, Author              
Spiecker, Erdmann10, Author              
Raabe, Dierk11, Author              
Gault, Baptiste1, Author              
Affiliations:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society, ou_578567              
3Research Group of Solid-State NMR, MPI for biophysical chemistry, Max Planck Society, ou_persistent35              
4Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany; Institute of Micro- and Nanostructure Research Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen, Germany; Institute of General Materials Properties, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 1, Erlangen, Germany; Institut für Werkstoffe, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, Germany, ou_persistent22              
5Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen, Germany, persistent22              
6Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863398              
7Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
8Microscopy and Diffraction, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863391              
9Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany, ou_persistent22              
10Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 6, Erlangen, Germany, ou_persistent22              
11Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              

Content

show
hide
Free keywords: Creep; High resolution transmission electron microscopy; Phase transitions; Probes; Shearing; Single crystals; Stacking faults; Transmission electron microscopy, Atom-probe tomography; Creep deformations; Electron channeling contrasts; Extended dislocations; Partial dislocations; Phase transformation mechanisms; Structural contrasts; Superlattice intrinsic stacking faults, Superalloys
 Abstract: We propose here a deformation-induced diffusive phase transformation mechanism occurring during shearing of γ′ ordered phase in a γ/γ′ single crystalline CoNi-based superalloy. Shearing involved the creation and motion of a high density of planar imperfections. Through correlative electron microscopy and atom probe tomography, we captured a superlattice intrinsic stacking fault (SISF) and its associated moving leading partial dislocation (LPD). The structure and composition of these imperfections reveal characteristic chemical – structural contrast. The SISF locally exhibits a D019 ordered structure coherently embedded in the L12 γ′ and enriched in W and Co. Interestingly, the LPD is enriched with Cr and Co, while the adjoining planes ahead of the LPD are enriched with Al. Quantitative analysis of the three-dimensional compositional field in the vicinity of imperfections sheds light onto a new in-plane diffusion mechanism as the LPD moves on specific 111 planes upon application of stress at high temperature. © 2018 Acta Materialia Inc.

Details

show
hide
Language(s): eng - English
 Dates: 2018-08-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1016/j.actamat.2018.05.074
BibTex Citekey: Makineni2018362
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Acta Materialia
  Abbreviation : Acta Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Kidlington : Elsevier Science
Pages: - Volume / Issue: 155 Sequence Number: - Start / End Page: 362 - 371 Identifier: ISSN: 1359-6454
CoNE: /journals/resource/954928603100