English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes

Faisal, F., Stumm, C., Bertram, M., Waidhas, F., Lykhach, Y., Cherevko, S., et al. (2018). Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 17(7), 592-598. doi:10.1038/s41563-018-0088-3.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-E7AF-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-E7B0-3
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Faisal, Firas1, Author              
Stumm, Corinna1, Author              
Bertram, Manon1, Author              
Waidhas, Fabian1, Author              
Lykhach, Yaroslava1, Author              
Cherevko, Serhiy2, 3, Author              
Xiang, Feifei4, Author              
Ammon, Maximilian4, Author              
Vorokhta, Mykhailo5, Author              
Šmíd, Břetislav5, Author              
Skála, Tomáš5, Author              
Tsud, Nataliya5, Author              
Neitzel, Armin1, Author              
Beranová, Klára6, 7, Author              
Prince, Kevin C.6, Author              
Geiger, Simon2, Author              
Kasian, Olga2, Author              
Wähler, Tobias1, Author              
Schuster, Ralf1, Author              
Schneider, M. Alexander4, Author              
Matolín, Vladimír5, Author              Mayrhofer, Karl Johann Jakob2, 3, Author              Brummel, Olaf1, Author              Libuda, Jörg1, 8, Author               more..
Affiliations:
1Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              
2Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
3Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
4Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              
5Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic, persistent22              
6Elettra-Sincrotrone Trieste SCpA, Basovizza-Trieste, Italy, persistent22              
7Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic, persistent22              
8Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              

Content

show
hide
Free keywords: Catalysis; Catalysts; Electrocatalysis; Electrolytes; Metal nanoparticles; Particle size; Renewable energy resources, Electrocatalytic materials; Electrocatalytic process; Electrocatalytic reactions; Electrochemical environments; Energy storage and conversions; Nanoparticle interfaces; Renewable energy systems; Synergistic reactions, Platinum compounds
 Abstract: Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future 1-3 . However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies. © 2018 The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2018-07-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/s41563-018-0088-3
BibTex Citekey: Faisal2018592
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Materials
  Abbreviation : Nat. Mater.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London, UK : Nature Pub. Group
Pages: - Volume / Issue: 17 (7) Sequence Number: - Start / End Page: 592 - 598 Identifier: ISSN: 1476-1122
CoNE: /journals/resource/111054835734000