Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes

Faisal, F., Stumm, C., Bertram, M., Waidhas, F., Lykhach, Y., Cherevko, S., et al. (2018). Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 17(7), 592-598. doi:10.1038/s41563-018-0088-3.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Faisal, Firas1, Autor           
Stumm, Corinna1, Autor           
Bertram, Manon1, Autor           
Waidhas, Fabian1, Autor           
Lykhach, Yaroslava1, Autor           
Cherevko, Serhiy2, 3, Autor           
Xiang, Feifei4, Autor           
Ammon, Maximilian4, Autor           
Vorokhta, Mykhailo5, Autor           
Šmíd, Břetislav5, Autor           
Skála, Tomáš5, Autor           
Tsud, Nataliya5, Autor           
Neitzel, Armin1, Autor           
Beranová, Klára6, 7, Autor           
Prince, Kevin C.6, Autor           
Geiger, Simon2, Autor           
Kasian, Olga2, Autor           
Wähler, Tobias1, Autor           
Schuster, Ralf1, Autor           
Schneider, M. Alexander4, Autor           
Matolín, Vladimír5, Autor           Mayrhofer, Karl Johann Jakob2, 3, Autor           Brummel, Olaf1, Autor           Libuda, Jörg1, 8, Autor            mehr..
Affiliations:
1Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              
2Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
3Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
4Lehrstuhl für Festkörperphysik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              
5Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, Prague, Czech Republic, persistent22              
6Elettra-Sincrotrone Trieste SCpA, Basovizza-Trieste, Italy, persistent22              
7Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic, persistent22              
8Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Catalysis; Catalysts; Electrocatalysis; Electrolytes; Metal nanoparticles; Particle size; Renewable energy resources, Electrocatalytic materials; Electrocatalytic process; Electrocatalytic reactions; Electrochemical environments; Energy storage and conversions; Nanoparticle interfaces; Renewable energy systems; Synergistic reactions, Platinum compounds
 Zusammenfassung: Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future 1-3 . However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies. © 2018 The Author(s).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-07-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41563-018-0088-3
BibTex Citekey: Faisal2018592
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Materials
  Kurztitel : Nat. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Pub. Group
Seiten: - Band / Heft: 17 (7) Artikelnummer: - Start- / Endseite: 592 - 598 Identifikator: ISSN: 1476-1122
CoNE: https://pure.mpg.de/cone/journals/resource/111054835734000