Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys

Volz, N., Zenk, C. H., Cherukuri, R., Kalfhaus, T., Weiser, M., Makineni, S. K., et al. (2018). Thermophysical and Mechanical Properties of Advanced Single Crystalline Co-base Superalloys. Metallurgical and Materials Transactions A, 49(9), 4099-4109. doi:10.1007/s11661-018-4705-1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Volz, N.1, Autor           
Zenk, Christopher H.2, Autor           
Cherukuri, R.3, Autor           
Kalfhaus, T.4, Autor           
Weiser, Martin5, Autor           
Makineni, Surendra Kumar6, Autor           
Betzing, C.7, Autor           
Lenz, Malte8, Autor           
Gault, Baptiste6, Autor           
Fries, Suzana Gomes9, Autor           
Schreuer, Jürgen10, Autor           
Vaβen, R.4, Autor           
Virtanen, Sannakaisa5, Autor           
Raabe, Dierk11, Autor           
Spiecker, Erdmann12, Autor           
Neumeier, Steffen2, Autor           
Göken, Mathias2, Autor           
Affiliations:
1Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute I, Martensstr. 5, Erlangen, Germany, persistent22              
2Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
3ICAMS, Ruhr-Universität Bochum, Universitätsstr. 150, Bochum, Germany, persistent22              
4Institut für Energie- und Klimaforschung (IEK-1), Forschungszentrum Jülich GmbH, Jülich, Germany, persistent22              
5Department of Material Science and Engineering, Institute IV, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstr. 7, Erlangen, Germany, persistent22              
6Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
7Institute for Geology, Mineralogy and Geophysics, Ruhr-Universität Bochum, Universitätsstr. 150, Bochum, Germany, persistent22              
8Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, Erlangen, Germany, persistent22              
9ICAMS, Ruhr-Universität Bochum, D-44780 Bochum, Germany, ou_persistent22              
10Institut für Geowissenschaften, Ruhr-Universität Bochum, Universitätstr. 150, Bochum, Germany, ou_persistent22              
11Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
12Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 6, Erlangen, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Alloying; Alloying elements; Aluminum alloys; Aluminum compounds; Cobalt compounds; Creep; Creep resistance; Crystalline materials; High temperature applications; Mechanical properties; Nickel alloys; Oxidation resistance; Rhenium alloys; Superalloys; Temperature; Ternary alloys; Thermal barrier coatings; Tungsten alloys, Atom probe tomography; Co-base superalloys; Long term stability; Ni-base superalloys; Thermal barrier coating systems; Thermodynamic calculations; Transformation temperatures; Two-phase microstructures, Cobalt alloys
 Zusammenfassung: A set of advanced single crystalline γ′ strengthened Co-base superalloys with at least nine alloying elements (Co, Ni, Al, W, Ti, Ta, Cr, Si, Hf, Re) has been developed and investigated. The objective was to generate multinary Co-base superalloys with significantly improved properties compared to the original Co-Al-W-based alloys. All alloys show the typical γ/γ′ two-phase microstructure. A γ′ solvus temperature up to 1174 °C and γ′ volume fractions between 40 and 60 pct at 1050 °C could be achieved, which is significantly higher compared to most other Co-Al-W-based superalloys. However, higher contents of Ti, Ta, and the addition of Re decrease the long-term stability. Atom probe tomography revealed that Re does not partition to the γ phase as strongly as in Ni-base superalloys. Compression creep properties were investigated at 1050 °C and 125 MPa in 〈001〉 direction. The creep resistance is close to that of first generation Ni-base superalloys. The creep mechanisms of the Re-containing alloy was further investigated and it was found that the deformation is located preferentially in the γ channels although some precipitates are sheared during early stages of creep. The addition of Re did not improve the mechanical properties and is therefore not considered as a crucial element in the design of future Co-base superalloys for high temperature applications. Thermodynamic calculations describe well how the alloying elements influence the transformation temperatures although there is still an offset in the actual values. Furthermore, a full set of elastic constants of one of the multinary alloys is presented, showing increased elastic stiffness leading to a higher Young’s modulus for the investigated alloy, compared to conventional Ni-base superalloys. The oxidation resistance is significantly improved compared to the ternary Co-Al-W compound. A complete thermal barrier coating system was applied successfully. © 2018 The Minerals, Metals Materials Society and ASM International

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-05-312018-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s11661-018-4705-1
BibTex Citekey: Volz20181
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Metallurgical and Materials Transactions A
  Andere : Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science
  Kurztitel : Metall. Mater. Trans. A-Phys. Metall. Mater. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : Springer Sciences & Business Media
Seiten: - Band / Heft: 49 (9) Artikelnummer: - Start- / Endseite: 4099 - 4109 Identifikator: ISSN: 1073-5623
CoNE: https://pure.mpg.de/cone/journals/resource/954928569608