Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Anisotropic distribution of the micro residual stresses in lath martensite revealed by FIB ring-core milling technique

Archie, F. M. F., Mughal, M. Z., Sebastiani, M., Bemporad, E., & Zaefferer, S. (2018). Anisotropic distribution of the micro residual stresses in lath martensite revealed by FIB ring-core milling technique. Acta Materialia, 150, 327-338. doi:10.1016/j.actamat.2018.03.030.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Archie, Fady Mamdouh Fawzy1, Autor           
Mughal, Muhammad Zeeshan2, Autor           
Sebastiani, Marco2, Autor           
Bemporad, Edoardo2, Autor           
Zaefferer, Stefan3, Autor           
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
2Roma Tre University, Engineering Department, Via della Vasca Navale 79, Rome, Italy, persistent22              
3Microscopy and Diffraction, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863391              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Anisotropy; Austenite; Deformation; Elasticity; Grain boundaries; Ion beams; Martensite; Martensitic transformations; Milling (machining); Residual stresses; Single crystals; Strain, Austenite grain boundaries; Crystallographic parameters; Damage; EBSD; Lath martensite structures; Martensitic microstructure; Prior austenite grain boundaries; Ring core, Structural design
 Zusammenfassung: Lath martensite structures in medium-carbon steels incorporate a significant amount of residual stresses that are mostly induced by the martensitic transformation process. Although former studies could identify these stresses using diffraction techniques, it was not possible to correlate the micro-scale distribution of the stress fields with respect to the morphological and the crystallographic parameters of the martensitic structure. In this study, we employ the micro-scale focused ion beam (FIB) ring-core milling technique for the measurement of local residual strain and stress distributions in fully martensitic microstructures. The aim is to study the residual stresses occurring within individual lath martensite crystals, and within areas of lath martensite which incorporate a parent austenite grain boundary. The relaxation strains obtained by the micrometer-sized ring-core milling, which correspond to the residual stresses prior to milling, are shown to exhibit an anisotropic distribution for each martensite variant. High extension relaxation strains (i.e. compressive stresses) prevail in the direction of the transformation-induced crystal shape deformation direction. Contraction strains (i.e. tensile residual stresses) are measured normal to the extension strains. In an area containing a prior austenite grain boundary, the residual stresses appeared – altogether – lower than in single crystal martensite laths. The significant residual tensile stresses identified in the martensite structures may support the formation of martensite micro-cracks, either in the as-quenched state or during deformation. © 2018 Acta Materialia Inc.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-05-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.actamat.2018.03.030
BibTex Citekey: Archie2018327
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Acta Materialia
  Kurztitel : Acta Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Kidlington : Elsevier Science
Seiten: - Band / Heft: 150 Artikelnummer: - Start- / Endseite: 327 - 338 Identifikator: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100