Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation

Li, Y., Fang, X., Zhang, S., & Feng, X. (2018). Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation. Corrosion Science, 135, 192-196. doi:10.1016/j.corsci.2018.02.043.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Yan1, 2, Autor           
Fang, Xufei3, 4, Autor           
Zhang, Siyuan5, Autor           
Feng, Xue3, 4, Autor           
Affiliations:
1AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China, persistent22              
2Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China, persistent22              
3AML, School of Aerospace Engineering, Tsinghua University, Beijing, China, persistent22              
4Center for Advanced Mechanics and Materials, Tsinghua University, Beijing, China, persistent22              
5Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chromium alloys; Corrosion; Crack propagation; Cracks; Grain boundaries; High resolution transmission electron microscopy; High temperature operations; Iron alloys; Microstructure; Nanoindentation; Oxidation; Stress corrosion cracking; Ternary alloys; Transmission electron microscopy, Coupling condition; High temperature; Indenters; Micro-structure evolutions; Oxide grains; Sharp crack; Stress corrosion; Stress oxidation, High temperature corrosion
 Zusammenfassung: The microstructure evolution of a FeNiCr alloy oxidized at 600 °C by simultaneously applying stress via high temperature nanoindentation is reported. Analysis using transmission electron microscopy shows that a sharp crack was induced beneath the indentation area under the stress-oxidation coupling condition. Nanotwins beneath the indentation area were also observed, which acted as a barrier that ceased the crack propagation beneath the indenter by altering the path of the crack. Results reveal a transformation from inter-granular crack propagation along the oxide grain boundaries to intra-granular crack propagation through the nanotwin structure with a zig-zag pattern. © 2018 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-05-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.corsci.2018.02.043
BibTex Citekey: Li2018192
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Corrosion Science
  Kurztitel : Corros. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Pergamon
Seiten: - Band / Heft: 135 Artikelnummer: - Start- / Endseite: 192 - 196 Identifikator: ISSN: 0010-938X
CoNE: https://pure.mpg.de/cone/journals/resource/954925393343