User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse


  Understanding precipitate evolution during friction stir welding of Al–Zn–Mg–Cu alloy through in-situ measurement coupled with simulation

Dos Santos, J. F., Staron, P., Fischer, T., Robson, J. D., Kostka, A., Colegrove, P. A., et al. (2018). Understanding precipitate evolution during friction stir welding of Al–Zn–Mg–Cu alloy through in-situ measurement coupled with simulation. Acta Materialia, 148, 163-172. doi:10.1016/j.actamat.2018.01.020.

Item is


show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-E82B-A Version Permalink: http://hdl.handle.net/21.11116/0000-0001-E82C-9
Genre: Journal Article


show Files




Dos Santos, Jorge F.1, Author              
Staron, Peter2, Author              
Fischer, Torben1, Author              
Robson, Joseph D.3, Author              
Kostka, Aleksander4, 5, Author              
Colegrove, Paul A.6, Author              
Wang, Hua1, 7, Author              
Hilgert, Jakob1, Author              
Bergmann, Luciano Andrei1, Author              
Hütsch, Leon Leander1, Author              
Huber, Norbert1, Author              
Schreyer, Andreas K.1, 8, Author              
1Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, Max-Planck Str. 1, Geesthacht, Germany, persistent22              
2Helmholtz-Zentrum Geesthacht, Institute of Materials Science, Max-Planck-Str. 1, Geesthacht, Germany, persistent22              
3School of Materials, University of Manchester, Oxford Road, Manchester, UK, persistent22              
4Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
5Center for Interface-Dominated High Performance Materials (ZGH), Ruhr-Universität Bochum, 44780 Bochum, Germany, persistent22              
6Welding Engineering Research Centre, Cranfield University, Cranfield, UK, persistent22              
7Welding Engineering Research Centre, Cranfield University, Cranfield, U, persistent22              
8European Spallation Source ESS ERIC, P.O. Box 176, Lund, Sweden, persistent22              


Free keywords: Aluminum; Aluminum alloys; Copper alloys; Friction; Friction stir welding; Magnesium alloys; Microstructural evolution; Numerical models; Precipitates; Research laboratories; Stainless steel; Tribology; Welding; X ray scattering; Zinc alloys; Zirconium alloys, Aerospace aluminium alloys; Al-alloy; Friction stir welding(FSW); High energy synchrotron; Microstructural changes; Microstructural modeling; Precipitation kinetics; Time resolved measurement, Precipitation (chemical)
 Abstract: Friction Stir Welding (FSW) imparts both heat and deformation to the metal being joined, producing profound microstructural changes that determine the weld properties. In the case of welding of aerospace aluminium alloys, the most important change is the modification of the size, nature, and fraction of strengthening precipitates. To understand these changes requires the ability to measure the microstructural evolution during the welding process. This paper describes a new tool, the FlexiStir system, a portable friction stir unit designed for use in a high-energy synchrotron beamline that enables in-situ studies of microstructural evolution during FSW. FlexiStir has been used to measure precipitate evolution during FSW of aluminium alloy 7449-TAF and provide time-resolved measurement of precipitate size and volume fraction via small angle X-ray scattering (SAXS). These measurements have been interpreted with the aid of a previously developed microstructural model. The model predictions and SAXS measurements are in good qualitative agreement and demonstrate the complex precipitate transformation, dissolution, and reprecipitation events that occur during welding. © 2018


Language(s): eng - English
 Dates: 2018
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.actamat.2018.01.020
BibTex Citekey: dosSantos2018163
 Degree: -



Legal Case


Project information


Source 1

Title: Acta Materialia
  Abbreviation : Acta Mater.
Source Genre: Journal
Publ. Info: Kidlington : Elsevier Science
Pages: - Volume / Issue: 148 Sequence Number: - Start / End Page: 163 - 172 Identifier: ISSN: 1359-6454
CoNE: https://pure.mpg.de/cone/journals/resource/954928603100