English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Atomic-scale insights into surface species of electrocatalysts in three dimensions

Li, T., Kasian, O., Cherevko, S., Zhang, S., Geiger, S., Scheu, C., et al. (2018). Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nature Catalysis, 1(4), 300-305. doi:10.1038/s41929-018-0043-3.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0001-E81F-8 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-E820-5
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, Tong1, 2, Author              
Kasian, Olga3, Author              
Cherevko, Serhiy3, 4, Author              
Zhang, Siyuan5, Author              
Geiger, Simon3, Author              
Scheu, Christina5, Author              
Felfer, Peter Johann6, Author              
Raabe, Dierk7, Author              
Gault, Baptiste1, Author              
Mayrhofer, Karl Johann Jakob3, 8, Author              
Affiliations:
1Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863384              
2Institute for Materials & ZGH, Ruhr-Universität Bochum, Germany, persistent22              
3Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
4Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Egerlandstrasse 3, 91058 Erlangen, Germany, ou_persistent22              
5Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
6Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany, persistent22              
7Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
8Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: Atoms; Electrocatalysis; Electrolysis; Fuel cells; Iridium compounds; Molecules; Oxygen; Surface states, Atom probe tomography; Complex relationships; Dissolution reactions; Electrochemical growth; Industrial processs; Mechanism and kinetics; Oxygen evolution reaction; Three-dimensional structure, Electrocatalysts
 Abstract: The topmost atomic layers of electrocatalysts determine the mechanism and kinetics of reactions in many important industrial processes, such as water splitting, chlor-electrolysis or fuel cells. Optimizing the performance of electrocatalysts requires a detailed understanding of surface-state changes during the catalytic process, ideally at the atomic scale. Here, we use atom probe tomography to reveal the three-dimensional structure of the first few atomic layers of electrochemically grown iridium oxide, an efficient electrocatalyst for the oxygen evolution reaction. We unveil the formation of confined, non-stoichiometric Ir-O species during oxygen evolution. These species gradually transform to IrO2, providing improved stability but also a decrease in activity. Additionally, electrochemical growth of oxide in deuterated solutions allowed us to trace hydroxy-groups and water molecules present in the regions of the oxide layer that are favourable for the oxygen evolution and iridium dissolution reactions. Overall, we demonstrate how tomography with near-atomic resolution advances the understanding of complex relationships between surface structure, surface state and function in electrocatalysis. © 2018 The Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2018-04-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1038/s41929-018-0043-3
BibTex Citekey: Li2018300
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Catalysis
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Nature Publishing Group
Pages: - Volume / Issue: 1 (4) Sequence Number: - Start / End Page: 300 - 305 Identifier: ISSN: 25201158
CoNE: /journals/resource/25201158