Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory

Bistoni, G., Polyak, I., Sparta, M., Thiel, W., & Neese, F. (2018). Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. Journal of Chemical Theory and Computation, 14(7), 3524-3531. doi:10.1021/acs.jctc.8b00348.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bistoni, Giovanni1, Autor           
Polyak, Iakov2, Autor           
Sparta, Manuel3, Autor
Thiel, Walter2, Autor           
Neese, Frank4, Autor           
Affiliations:
1Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541703              
2Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              
3Teknova AS, Tordenskjolds gate 9, NO-4612 Kristiansand, Norway, ou_persistent22              
4Research Department Neese, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541710              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The hydroxylation reaction catalyzed by p-hydroxybenzoate hydroxylase and the Baeyer–Villiger reaction catalyzed by cyclohexanone monooxygenase are investigated by means of quantum mechanical/molecular mechanical (QM/MM) calculations at different levels of QM theory. The geometries of the stationary points along the reaction profile are obtained from QM/MM geometry optimizations, in which the QM region is treated by density functional theory (DFT). Relative energies are determined from single-point QM/MM calculations using the domain-based local pair natural orbital coupled cluster DLPNO-CCSD(T) method as QM component. The results are compared with single-point DFT/MM energies obtained using popular density functionals and with available experimental and computational data. It is found that the choice of the QM method strongly affects the computed energy profiles for these reactions. Different density functionals provide qualitatively different energy barriers (variations of the order of 10 kcal/mol in both reactions), thus limiting the confidence in DFT/MM computational predictions of energy profiles. On the other hand, the use of the DLPNO-CCSD(T) method in conjunction with large QM regions and basis sets makes it possible to achieve high accuracy. A critical discussion of all the technical aspects of the calculations is given with the aim of aiding computational chemists in the application of the DLPNO-CCSD(T) methodology in QM/MM calculations.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-04-132018-06-082018-06-082018-07-10
 Publikationsstatus: Erschienen
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jctc.8b00348
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
  Andere : J. Chem. Theory Comput.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 14 (7) Artikelnummer: - Start- / Endseite: 3524 - 3531 Identifikator: Anderer: 1549-9618
CoNE: https://pure.mpg.de/cone/journals/resource/111088195283832