Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Estimating time of HIV-1 infection from next-generation sequence diversity

Puller, V., Neher, R., & Albert, J. (2017). Estimating time of HIV-1 infection from next-generation sequence diversity. PLOS COMPUTATIONAL BIOLOGY, 13(10): e1005775. doi:10.1371/journal.pcbi.1005775.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Puller, Vadim1, 2, 3, Autor
Neher, Richard1, 2, 3, Autor
Albert, Jan4, 5, Autor
Affiliations:
1Max Planck Institute for Developmental Biology, Max Planck Society, Max-Planck-Ring 5, 72076 Tübingen, DE, ou_2421691              
2Biozentrum, University of Basel, ou_persistent22              
3SIB Swiss Institute of Bioinformatics, Basel, ou_persistent22              
4Karolinska Institute, Stockholm, ou_persistent22              
5Karolinska University Hospital, Stockholm, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: TYPE-1 INFECTION; CELL COUNT; SEROCONVERSION; ASSAYS; PROGRESSION; THRESHOLDS; DIAGNOSIS; BIOMARKER; MARKER; MODELBiochemistry & Molecular Biology; Mathematical & Computational Biology;
 Zusammenfassung: Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but important to understand the epidemiology of the infection. Here we explore the utility of virus diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected patients with known dates of infection. The results were validated on a second dataset from 31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions, with little inter-patient variation. The precision of the TI estimate improved with increasing sequencing depth, showing that diversity in NGS data yields superior estimates to the number of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers. The full advantage of deep NGS was utilized with continuous diversity measures such as average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The precision depended on the genomic region and codon position and was highest when 3rd codon positions in the entire pol gene were used. For these data, TI estimates had a mean absolute error of around 1 year. The error increased only slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity determined by NGS can be used to estimate time since HIV-1 infection many years after the infection, in contrast to most alternative biomarkers. We provide the regression coefficients as well as web tool for TI estimation.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-10-02
 Publikationsstatus: Online veröffentlicht
 Seiten: 20
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000414148800032
DOI: 10.1371/journal.pcbi.1005775
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLOS COMPUTATIONAL BIOLOGY
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA : PUBLIC LIBRARY SCIENCE
Seiten: - Band / Heft: 13 (10) Artikelnummer: e1005775 Start- / Endseite: - Identifikator: ISSN: 1553-734X