English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis

Liu, C., Cheng, Y.-J., Wang, J.-W., & Weigel, D. (2017). Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nature Plants, 3(9), 742-748. doi:10.1038/s41477-017-0005-9.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Liu, C, Author
Cheng, Y-J, Author
Wang, J-W, Author
Weigel, D1, Author           
Affiliations:
1Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375790              

Content

show
hide
Free keywords: TCP TRANSCRIPTION FACTORS; GENOME-WIDE ANALYSIS; ORYZA-SATIVA; INTERPHASE CHROMOSOMES; DROSOPHILA GENOME; RESOLUTION; ORGANIZATION; ARCHITECTURE; PRINCIPLES; THALIANA
 Abstract: The non-random three-dimensional organization of genomes is critical for many cellular processes. Recently, analyses of genome-wide chromatin packing in the model dicot plant Arabidopsis thaliana have been reported(1-4). At a kilobase scale, the A. thaliana chromatin interaction network is highly correlated with a range of genomic and epigenomic features(1-4). Surprisingly, topologically associated domains (TADs), which appear to be a prevalent structural feature of genome packing in many animal species, are not prominent in the A. thaliana genome(1,2,4-6). Using a genome-wide chromatin conformation capture approach, Hi-C (ref. (7)), we report high-resolution chromatin packing patterns of another model plant, rice. We unveil new structural features of chromatin organization at both chromosomal and local levels compared to A. thaliana, with thousands of distinct TADs that cover about a quarter of the rice genome. The rice TAD boundaries are associated with euchromatic epigenetic marks and active gene expression, and enriched with a sequence motif that can be recognized by plant-specific TCP proteins. In addition, we report chromosome decondensation in rice seedlings undergoing cold stress, despite local chromatin packing patterns remaining largely unchanged. The substantial variation found already in a comparison of two plant species suggests that chromatin organization in plants might be more diverse than in multicellular animals.

Details

show
hide
Language(s): eng - English
 Dates: 2017-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1038/s41477-017-0005-9
PMID: 28848243
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature Plants
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Nature Publishing Group
Pages: - Volume / Issue: 3 (9) Sequence Number: - Start / End Page: 742 - 748 Identifier: ISSN: 2055-0278
CoNE: https://pure.mpg.de/cone/journals/resource/2055-0278