English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians

Bauknecht, P., & Jékely, G. (2017). Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biology, 15: 6. doi:10.1186/s12915-016-0341-7.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bauknecht, P1, Author           
Jékely, G1, Author           
Affiliations:
1Research Group Neurobiology of Marine Zooplankton, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3379109              

Content

show
hide
Free keywords: -
 Abstract: Background: Norepinephrine/noradrenaline is a neurotransmitter implicated in arousal and other aspects of vertebrate behavior and physiology. In invertebrates, adrenergic signaling is considered absent and analogous functions are performed by the biogenic amines octopamine and its precursor tyramine. These chemically similar transmitters signal by related families of G-protein-coupled receptors in vertebrates and invertebrates, suggesting that octopamine/tyramine are the invertebrate equivalents of vertebrate norepinephrine. However, the evolutionary relationships and origin of these transmitter systems remain unclear.
Results: Using phylogenetic analysis and receptor pharmacology, here we have established that norepinephrine, octopamine, and tyramine receptors coexist in some marine invertebrates. In the protostomes Platynereis dumerilii (an annelid) and Priapulus caudatus (a priapulid), we have identified and pharmacologically characterized adrenergic alpha 1 and alpha 2 receptors that coexist with octopamine alpha, octopamine beta, tyramine type 1, and tyramine type 2 receptors. These receptors represent the first examples of adrenergic receptors in protostomes. In the deuterostome Saccoglossus kowalevskii (a hemichordate), we have identified and characterized octopamine a, octopamine beta, tyramine type 1, and tyramine type 2 receptors, representing the first examples of these receptors in deuterostomes. S. kowalevskii also has adrenergic alpha 1 and alpha 2 receptors, indicating that all three signaling systems coexist in this animal. In phylogenetic analysis, we have also identified adrenergic and tyramine receptor orthologs in xenacoelomorphs.
Conclusions: Our results clarify the history of monoamine signaling in bilaterians. Given that all six receptor families (two each for octopamine, tyramine, and norepinephrine) can be found in representatives of the two major clades of Bilateria, the protostomes and the deuterostomes, all six receptors must have coexisted in the last common ancestor of the protostomes and deuterostomes. Adrenergic receptors were lost from most insects and nematodes, and tyramine and octopamine receptors were lost from most deuterostomes. This complex scenario of differential losses cautions that octopamine signaling in protostomes is not a good model for adrenergic signaling in deuterostomes, and that studies of marine animals where all three transmitter systems coexist will be needed for a better understanding of the origin and ancestral functions of these transmitters.

Details

show
hide
Language(s): eng - English
 Dates: 2017-01
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1186/s12915-016-0341-7
PMID: 28137258
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin ; Heidelberg : Springer
Pages: 12 Volume / Issue: 15 Sequence Number: 6 Start / End Page: - Identifier: ISSN: 1741-7007
CoNE: https://pure.mpg.de/cone/journals/resource/111071069889000