Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Artificial intelligence for high-throughput discovery of topological insulators: The example of alloyed tetradymites

Cao, G., Ouyang, R., Ghiringhelli, L. M., Scheffler, M., Liu, H., Carbogno, C., et al. (2020). Artificial intelligence for high-throughput discovery of topological insulators: The example of alloyed tetradymites. Physical Review Materials, 4(3): 034204. doi:10.1103/PhysRevMaterials.4.034204.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
1808.04733-1.pdf (Preprint), 6MB
Name:
1808.04733-1.pdf
Beschreibung:
-
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
-
:
PhysRevMaterials.4.034204.pdf (Verlagsversion), 2MB
Name:
PhysRevMaterials.4.034204.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2020
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Cao, Guohua1, 2, 3, Autor           
Ouyang, Runhai3, Autor           
Ghiringhelli, Luca M.3, Autor           
Scheffler, Matthias3, Autor           
Liu, Huijun1, Autor
Carbogno, Christian3, Autor           
Zhang, Zhenyu2, Autor
Affiliations:
1Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China, ou_persistent22              
2International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China, ou_persistent22              
3NOMAD, Fritz Haber Institute, Max Planck Society, ou_3253022              

Inhalt

ausblenden:
Schlagwörter: Condensed Matter, Materials Science, cond-mat.mtrl-sci
 Zusammenfassung: Significant advances have been made in predicting new topological materials using high-throughput empirical descriptors or symmetry-based indicators. This line of research has produced extensive lists of candidate topological materials that still await experimental validation. To date, these approaches have been limited to materials already known in databases, leaving a much larger portion of the materials space unexplored. Here we uncover a novel two-dimensional descriptor for fast and reliable identification of the topological characters of complex alloyed systems. Using tetradymites with widely varying stoichiometric compositions as examples, we obtain this descriptor by applying a recently developed data-analytics approach named SISSO (Sure Independence Screening and Sparsifying Operator) to training data from high-level electronic structure calculations. By leveraging this descriptor that contains only two elemental properties (the atomic number and electronegativity) of the constituent species, we can readily scan over four million alloys in the tetradymite family. Strikingly, nearly two million new topological insulators are discovered, thus drastically expanding the territory of the topological materials world. The strong predictive power of the descriptor beyond the initial scope of the training data also testifies the increasing importance of such data-driven approaches in materials discovery.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2018-08-142020-02-282019-10-252020-02-272020-03-23
 Publikationsstatus: Online veröffentlicht
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : TEC1p - Big-Data Analytics for the Thermal and Electrical Conductivity of Materials from First Principles
Grant ID : 740233
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

ausblenden:
Titel: Physical Review Materials
  Kurztitel : Phys. Rev. Mat.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: College Park, MD : American Physical Society
Seiten: 6 Band / Heft: 4 (3) Artikelnummer: 034204 Start- / Endseite: - Identifikator: ISSN: 2475-9953
CoNE: https://pure.mpg.de/cone/journals/resource/2475-9953