English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures

Ratchford, D. C., Winta, C., Chatzakis, I., Ellis, C. T., Paßler, N., Winterstein, J., et al. (2019). Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures. ACS Nano, 13(6), 6730-6741. doi:10.1021/acsnano.9b01275.

Item is

Files

show Files
hide Files
:
1806.06792.pdf (Preprint), 2MB
Name:
1806.06792.pdf
Description:
File downloaded from arXiv at 2018-09-05 11:02
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
acsnano.9b01275.pdf (Publisher version), 3MB
Name:
acsnano.9b01275.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Ratchford, Daniel C.1, Author
Winta, Christopher2, Author           
Chatzakis, Ioannis3, Author
Ellis, Chase T.1, Author
Paßler, Nikolai2, Author           
Winterstein, Jonathan1, Author
Dev, Pratibha4, Author
Razdolski, Ilya2, 5, Author           
Matson, Joseph R.6, Author
Nolen, Joshua R.6, Author
Tischler, Joseph G.1, Author
Vurgaftman, Igor1, Author
Katz, Michael B.7, Author
Nepal, Neeraj1, Author
Hardy, Matthew T.1, Author
Hachtel, Jordan A.8, Author
Idrobo, Juan Carlos8, Author
Reinecke, Thomas L.1, Author
Giles, Alexander J.1, Author
Katzer, D. Scott1, Author
Bassim, Nabil D.1, 9, AuthorStroud, Rhonda M.1, AuthorWolf, Martin2, Author           Paarmann, Alexander2, Author           Caldwell, Joshua D.1, 6, Author more..
Affiliations:
1U.S. Naval Research Laboratory, Washington, D.C. 20375, United States, ou_persistent22              
2Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
3ASEE postdoctoral associate, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States, ou_persistent22              
4Department of Physics and Astronomy, Howard University, Washington, DC 20059, United States, ou_persistent22              
5FELIX Laboratory, Faculty of Science, Radboud University, 6500 GL Nijmegen, The Netherlands, ou_persistent22              
6Department of Mechanical Engineering, Vanderbilt University, 2400 Highland Ave, Nashville, TN 37212, United States, ou_persistent22              
7NRC postdoctoral associate, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States, ou_persistent22              
8Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, ou_persistent22              
9Department of Materials Science and Engineering, JHE 357, McMaster University, Hamilton, Ontario, Canada, ou_persistent22              

Content

show
hide
Free keywords: Condensed Matter, Materials Science, cond-mat.mtrl-sci
 Abstract: Surface phonon polaritons (SPhPs) - the surface-bound electromagnetic modes
of a polar material resulting from the coupling of light with optic phonons -
offer immense technological opportunities for nanophotonics in the infrared
(IR) spectral region. Here, we present a novel approach to overcome the major
limitation of SPhPs, namely the narrow, material-specific spectral range where
SPhPs can be supported, called the Reststrahlen band. We use an atomic-scale
superlattice (SL) of two polar semiconductors, GaN and AlN, to create a hybrid
material featuring layer thickness-tunable optic phonon modes. As the IR
dielectric function is governed by the optic phonon behavior, such control
provides a means to create a new dielectric function distinct from either
constituent material and to tune the range over which SPhPs can be supported.
This work offers the first glimpse of the guiding principles governing the
degree to which the dielectric function can be designed using this approach.

Details

show
hide
Language(s): eng - English
 Dates: 2018-06-182019-02-152019-06-042019-06-042019-06-25
 Publication Status: Issued
 Pages: 12
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Nano
  Other : ACS Nano
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: 12 Volume / Issue: 13 (6) Sequence Number: - Start / End Page: 6730 - 6741 Identifier: ISSN: 1936-0851
CoNE: https://pure.mpg.de/cone/journals/resource/1936-0851