Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Evaluating neuronal codes for inference using Fisher information

Haefner, R., & Bethge, M. (2011). Evaluating neuronal codes for inference using Fisher information. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems 23: 24th Annual Conference on Neural Information Processing Systems 2010 (pp. 1993-2001).

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Haefner, RM1, 2, Autor           
Bethge, M1, 2, Autor           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Many studies have explored the impact of response variability on the quality of sensory codes. The source of this variability is almost always assumed to be intrinsic to the brain. However, when inferring a particular stimulus property, variability associated with other stimulus attributes also effectively act as noise. Here we study the impact of such stimulus-induced response variability for the case of binocular disparity inference. We characterize the response distribution for the binocular energy model in response to random dot stereograms and find it to be very different from the Poisson-like noise usually assumed. We then compute the Fisher information with respect to binocular disparity, present in the monocular inputs to the standard model of early binocular processing, and thereby obtain an upper bound on how much information a model could theoretically extract from them. Then we analyze the information loss incurred by the different ways of combining those inputs to produce a scalar single-neuron response. We find that in the case of depth inference, monocular stimulus variability places a greater limit on the extractable information than intrinsic neuronal noise for typical spike counts. Furthermore, the largest loss of information is incurred by the standard model for position disparity neurons (tuned-excitatory), that are the most ubiquitous in monkey primary visual cortex, while more information from the inputs is preserved in phase-disparity neurons (tuned-near or tuned-far) primarily found in higher cortical regions.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2011-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS 2010)
Veranstaltungsort: Vancouver, BC, Canada
Start-/Enddatum: 2010-12-06 - 2010-12-11

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in neural information processing systems 23: 24th Annual Conference on Neural Information Processing Systems 2010
Genre der Quelle: Konferenzband
 Urheber:
Lafferty, J, Herausgeber
Williams, CKI, Herausgeber
Shawe-Taylor, J, Herausgeber
Zemel, RS, Herausgeber
Culotta, A, Herausgeber
Affiliations:
-
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 1993 - 2001 Identifikator: ISBN: 978-1-617-82380-0