Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes.

Bun, P., Dmitrieff, S., Belmonte, J. M., Nédélec, F. J., & Lenart, P. (2018). A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes. eLife, 7: e31469. doi:10.7554/eLife.31469.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2640104.pdf (Verlagsversion), 11MB
Name:
2640104.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bun, P., Autor
Dmitrieff, S., Autor
Belmonte, J. M., Autor
Nédélec, F. J., Autor
Lenart, P.1, Autor           
Affiliations:
1Research Group of Cytoskeletal Dynamics in Oocytes, MPI for Biophysical Chemistry, Max Planck Society, ou_2640691              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Patiria miniata; actin dynamics; cell biology; cell division; contractility; cytoskeleton; oocyte meiosis
 Zusammenfassung: While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-01-19
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.7554/eLife.31469
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eLife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 27 Band / Heft: 7 Artikelnummer: e31469 Start- / Endseite: - Identifikator: -