English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO2 Reduction

Klingan, K., Kottakkat, T., Jovanov, Z. P., Jiang, S., Pasquini, C., Scholten, F., et al. (2018). Reactivity Determinants in Electrodeposited Cu Foams for Electrochemical CO2 Reduction. ChemSusChem, 11(19), 3449-3459. doi:10.1002/cssc.201801582.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Klingan, Katharina1, Author
Kottakkat, Tintula2, Author
Jovanov, Zarko P.3, Author
Jiang, Shan1, Author
Pasquini, Chiara1, Author
Scholten, Fabian4, Author
Kubella, Paul1, Author
Bergmann, Arno4, Author           
Roldan Cuenya, Beatriz4, 5, Author           
Rot, Christina2, Author
Dau, Holger1, Author
Affiliations:
1Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany, ou_persistent22              
2Department of Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany, ou_persistent22              
3Department of Chemistry Technische Universität Berlin, Straße des 17. Juni, 10623 Berlin (Germany), ou_persistent22              
4Interface Science, Fritz Haber Institute, Max Planck Society, ou_2461712              
5Department of Physics, Ruhr-University Bochum, 44780 Bochum, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: CO2 reduction is of significant interest for the production of nonfossil fuels. The reactivity of eight Cu foams with substantially different morphologies was comprehensively investigated by analysis of the product spectrum and in situ electrochemical spectroscopies (X‐ray absorption near edge structure, extended X‐ray absorption fine structure, X‐ray photoelectron spectroscopy, and Raman spectroscopy). The approach provided new insight into the reactivity determinants: The morphology, stable Cu oxide phases, and *CO poisoning of the H2 formation reaction are not decisive; the electrochemically active surface area influences the reactivity trends; macroscopic diffusion limits the proton supply, resulting in pronounced alkalization at the CuCat surfaces (operando Raman spectroscopy). H2 and CH4 formation was suppressed by macroscopic buffer alkalization, whereas CO and C2H4 formation still proceeded through a largely pH‐independent mechanism. C2H4 was formed from two CO precursor species, namely adsorbed *CO and dissolved CO present in the foam cavities.

Details

show
hide
Language(s): eng - English
 Dates: 2018-07-132018-10-11
 Publication Status: Published online
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1002/cssc.201801582
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : OPERANDOCAT - In situ and Operando Nanocatalysis: Size, Shape and Chemical State Effects
Grant ID : 725915
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: ChemSusChem
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: 11 Volume / Issue: 11 (19) Sequence Number: - Start / End Page: 3449 - 3459 Identifier: ISSN: 1864-5631
CoNE: https://pure.mpg.de/cone/journals/resource/1864-5631