日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making

Lahoti, P., Weikum, G., & Gummadi, K. P. (2018). iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making. Retrieved from http://arxiv.org/abs/1806.01059.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0002-1545-9 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0002-1546-8
資料種別: 成果報告書
LaTeX : {iFair}: {L}earning Individually Fair Data Representations for Algorithmic Decision Making

ファイル

表示: ファイル
非表示: ファイル
:
arXiv:1806.01059.pdf (プレプリント), 653KB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0002-1547-7
ファイル名:
arXiv:1806.01059.pdf
説明:
File downloaded from arXiv at 2018-09-13 12:29
OA-Status:
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
http://arxiv.org/help/license

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Lahoti, Preethi1, 著者           
Weikum, Gerhard1, 著者           
Gummadi, Krishna P.2, 著者           
所属:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2External Organizations, ou_persistent22              

内容説明

表示:
非表示:
キーワード: Computer Science, Learning, cs.LG,Computer Science, Information Retrieval, cs.IR,Statistics, Machine Learning, stat.ML
 要旨: People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: ensuring that each ethnic or social group receives its fair share in the outcome of classifiers and rankings. In contrast, the alternative paradigm of individual fairness has received relatively little attention. This paper introduces a method for probabilistically clustering user records into a low-rank representation that captures individual fairness yet also achieves high accuracy in classification and regression models. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. Since the case for fairness is ubiquitous across many tasks, we aim to learn general representations that can be applied to arbitrary downstream use-cases. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on two real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2018-06-042018
 出版の状態: オンラインで出版済み
 ページ: 12 p.
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): arXiv: 1806.01059
URI: http://arxiv.org/abs/1806.01059
BibTex参照ID: Lahoti_arXiv1806.01059
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物

表示: