ausblenden:
Schlagwörter:
Computer Science, Computer Vision and Pattern Recognition, cs.CV
Zusammenfassung:
In this study, we explore building a two-stage framework for enabling users
to directly manipulate high-level attributes of a natural scene. The key to our
approach is a deep generative network which can hallucinate images of a scene
as if they were taken at a different season (e.g. during winter), weather
condition (e.g. in a cloudy day) or time of the day (e.g. at sunset). Once the
scene is hallucinated with the given attributes, the corresponding look is then
transferred to the input image while preserving the semantic details intact,
giving a photo-realistic manipulation result. As the proposed framework
hallucinates what the scene will look like, it does not require any reference
style image as commonly utilized in most of the appearance or style transfer
approaches. Moreover, it allows to simultaneously manipulate a given scene
according to a diverse set of transient attributes within a single model,
eliminating the need of training multiple networks per each translation task.
Our comprehensive set of qualitative and quantitative results demonstrate the
effectiveness of our approach against the competing methods.