English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  C2NxO1-x framework carbons with defined microporosity and Co-doped functional pores

Tian, Z., Fechler, N., Oschatz, M., Heil, T., Schmidt, J., Yuan, S., et al. (2018). C2NxO1-x framework carbons with defined microporosity and Co-doped functional pores. Journal of Materials Chemistry A, 6(39), 19013-19019. doi:10.1039/C8TA03213K.

Item is

Files

show Files
hide Files
:
Article.pdf (Publisher version), 3MB
Name:
Article.pdf
Description:
-
OA-Status:
Hybrid
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Tian, Zhihong1, Author           
Fechler, Nina2, Author           
Oschatz, Martin3, Author           
Heil, Tobias4, Author           
Schmidt, Johannes, Author
Yuan, Siguo, Author
Antonietti, Markus1, Author           
Affiliations:
1Markus Antonietti, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863321              
2Nina Fechler, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2173643              
3Martin Oschatz, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2364733              
4Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              

Content

show
hide
Free keywords: -
 Abstract: Gallic acid and urea are used to produce C2NO materials with rather dined micropores via direct condensation and ring closure. The materials show a unique heterocycle containing carbonaceous structure and features an unusually high content of heteroatoms (nitrogen, oxygen) lining inside the pores, meanwhile having high specific surface area. The multifunctional carbon materials demonstrate good performance for selective CO2 capture resulting from the adjustable porosity and polarizability. In view of the simplicity of the salt flux synthetic method and the advantage of the available sustainable starting synthons, the C2NO framework has potential for use in diverse practical applications.

Details

show
hide
Language(s):
 Dates: 2018-09-102018
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1039/C8TA03213K
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Materials Chemistry A
  Abbreviation : J. Mater. Chem. A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, UK : Royal Society of Chemistry
Pages: - Volume / Issue: 6 (39) Sequence Number: - Start / End Page: 19013 - 19019 Identifier: ISSN: 2050-7488