日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Deriving inferential statistics from recurrence plots: A recurrence-based test of differences between sample distributions and its comparison to the two-sample Kolmogorov-Smirnov test

Wallot, S., & Leonardi, G. (2018). Deriving inferential statistics from recurrence plots: A recurrence-based test of differences between sample distributions and its comparison to the two-sample Kolmogorov-Smirnov test. Chaos: An interdisciplinary journal of nonlinear science, 28(8):. doi:10.1063/1.5024915.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0002-45B4-5 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0002-6981-6
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Wallot, Sebastian1, 著者           
Leonardi, Giuseppe2, 著者
所属:
1Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Max Planck Society, ou_2421695              
2external, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: Recurrence plots (RPs) have proved to be a very versatile tool to analyze temporal dynamics of time series data. However, it has also been conjectured that RPs can be used to model samples of random variables, that is, data that do not contain any temporal dependencies. In the current paper, we show that RPs can indeed be used to mimic nonparametric inferential statistics. Particularly, we use the case of the two-sample Kolmogorov-Smirnov test as a proof-of-concept, showing how such a test can be done based on RPs. Simulations on differences in mean, variance, and shape of two distributions show that the results of the classical two-sample Kolmogorov-Smirnov test and the recurrence-based test for differences in distributions of two independent samples scale well with each other. While the Kolmogorov-Smirnov test seems to be more sensitive in detecting differences in means, the recurrence based test seems to be more sensitive to detect heteroscedasticity and asymmetry. Potential improvements of our approach as well as extensions to tests with individual distributions are discussed. Published by AIP Publishing.

資料詳細

表示:
非表示:
言語:
 日付: 2018-08-28
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 000443760700046
DOI: 10.1063/1.5024915
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Chaos: An interdisciplinary journal of nonlinear science
  その他 : Chaos: An interdisciplinary journal of nonlinear science
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Woodbury, NY : American Institute of Physics
ページ: - 巻号: 28 (8) 通巻号: 085712 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 1054-1500
CoNE: https://pure.mpg.de/cone/journals/resource/954922836228