English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects

Khan, S., Chatziioannou, K., Hannam, M., & Ohme, F. (2019). Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D, 100 (2): 024059. doi:10.1103/PhysRevD.100.024059.

Item is

Files

show Files
hide Files
:
1809.10113.pdf (Preprint), 2MB
Name:
1809.10113.pdf
Description:
File downloaded from arXiv at 2018-10-15 10:11
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PhysRevD.100.024059.pdf (Publisher version), 4MB
 
File Permalink:
-
Name:
PhysRevD.100.024059.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Khan, Sebastian1, Author           
Chatziioannou, Katerina, Author
Hannam, Mark, Author
Ohme, Frank2, Author           
Affiliations:
1Binary Merger Observations and Numerical Relativity, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_2461691              
2Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24013              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc
 Abstract: The properties of compact binaries, such as masses and spins, are imprinted
in the gravitational-waves they emit and can be measured using parameterised
waveform models. Accurately and efficiently describing the complicated
precessional dynamics of the various angular momenta of the system in these
waveform models is the object of active investigation. One of the key models
extensively used in the analysis of LIGO and Virgo data is the
single-precessing-spin waveform model IMRPhenomPv2. In this article we present
a new model IMRPhenomPv3 which includes the effects of two independent spins in
the precession dynamics. Whereas IMRPhenomPv2 utilizes a single-spin
frequency-dependent post-Newtonian rotation to describe precession effects, the
improved model, IMRPhenomPv3, employs a double-spin rotation that is based on
recent developments in the description of precessional dynamics. Besides
double-spin precession, the improved model benefits from a more accurate
description of precessional effects. We validate our new model against a large
set of precessing numerical-relativity simulations. We find that IMRPhenomPv3
has better agreement with the inspiral portion of precessing binary-black-hole
simulations and is more robust across a larger region of the parameter space
than IMRPhenomPv2. As a first application we analyse, for the first time, the
gravitational-wave event GW151226 with a waveform model that describes two-spin
precession. Within statistical uncertainty our results are consistent with
published results. IMRPhenomPv3 will allow studies of the measurability of
individual spins of binary black holes using GWs and can be used as a
foundation upon which to build further improvements, such as modeling
precession through merger, extending to higher multipoles, and including tidal
effects.

Details

show
hide
Language(s):
 Dates: 2018-09-262019
 Publication Status: Issued
 Pages: 15 pages, 5 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 100 (2) Sequence Number: 024059 Start / End Page: - Identifier: -