Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models

Salem, A., Zhang, Y., Humbert, M., Fritz, M., & Backes, M. (2019). ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models. In Network and Distributed Systems Security Symposium 2019. Reston, VA: Internet Society. doi:10.14722/ndss.2019.23119.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1806.01246.pdf (Preprint), 706KB
Name:
arXiv:1806.01246.pdf
Beschreibung:
File downloaded from arXiv at 2018-10-17 13:20
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
ndss2019_03A-1_Salem_paper.pdf (Verlagsversion), 581KB
Name:
ndss2019_03A-1_Salem_paper.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
The Proceedings will be made freely accessible from the Internet Society webpages. Furthermore, permission to freely reproduce all or parts of papers for noncommercial purposes is granted provided that copies bear the Internet Society notice included in the first page of the paper. The authors are therefore free to post the camera-ready versions of their papers on their personal pages and within their institutional repositories. Reproduction for commercial purposes is strictly prohibited and requires prior consent.
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Salem, Ahmed1, Autor
Zhang, Yang1, Autor
Humbert, Mathias1, Autor
Fritz, Mario1, Autor           
Backes, Michael1, Autor           
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Cryptography and Security, cs.CR,Computer Science, Artificial Intelligence, cs.AI,Computer Science, Learning, cs.LG
 Zusammenfassung: Machine learning (ML) has become a core component of many real-world
applications and training data is a key factor that drives current progress.
This huge success has led Internet companies to deploy machine learning as a
service (MLaaS). Recently, the first membership inference attack has shown that
extraction of information on the training set is possible in such MLaaS
settings, which has severe security and privacy implications.
However, the early demonstrations of the feasibility of such attacks have
many assumptions on the adversary such as using multiple so-called shadow
models, knowledge of the target model structure and having a dataset from the
same distribution as the target model's training data. We relax all 3 key
assumptions, thereby showing that such attacks are very broadly applicable at
low cost and thereby pose a more severe risk than previously thought. We
present the most comprehensive study so far on this emerging and developing
threat using eight diverse datasets which show the viability of the proposed
attacks across domains.
In addition, we propose the first effective defense mechanisms against such
broader class of membership inference attacks that maintain a high level of
utility of the ML model.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-06-042019
 Publikationsstatus: Online veröffentlicht
 Seiten: 15 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: Salem_NDSS19
DOI: 10.14722/ndss.2019.23119
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Network and Distributed Systems Security Symposium 2019
Veranstaltungsort: San Diego, CA, USA
Start-/Enddatum: 2019-02-24 - 2019-02-27

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : imPact
Grant ID : 610150
Förderprogramm : Funding Programme 7 (FP7)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Network and Distributed Systems Security Symposium 2019
  Kurztitel : NDSS 2019
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Reston, VA : Internet Society
Seiten: 15 p. Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISBN: 1-891562-55-X