English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A large committed long-term sink of Carbon due to vegetation dynamics

Pugh, T., Jones, C., Huntingford, C., Burton, C., Arneth, A., Brovkin, V., et al. (2018). A large committed long-term sink of Carbon due to vegetation dynamics. Earth's Future, 6, 1413-1432. doi:10.1029/2018EF000935.

Item is

Files

show Files
hide Files
:
Pugh_et_al-2018-Earth%27s_Future.pdf (Publisher version), 974KB
Name:
Pugh_et_al-2018-Earth%27s_Future.pdf
Description:
Early View
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Pugh, T.A.M., Author
Jones, C.D., Author
Huntingford, C., Author
Burton, C., Author
Arneth, A., Author
Brovkin, Victor1, Author           
Ciais, P., Author
Lomas, M., Author
Robertson, E., Author
Piao, S.L., Author
Sitch, S., Author
Affiliations:
1Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society, ou_913566              

Content

show
hide
Free keywords: -
 Abstract: The terrestrial biosphere shows substantial inertia in its response to environmental change. Hence, assessments of transient changes in ecosystem properties to 2100 do not capture the full magnitude of the response realized once ecosystems reach an effective equilibrium with the changed environmental boundary conditions. This equilibrium state can be termed the committed state, in contrast to a transient state in which the ecosystem is in disequilibrium. The difference in ecosystem properties between the transient and committed states represents the committed change yet to be realized. Here an ensemble of dynamic global vegetation model simulations was used to assess the changes in tree cover and carbon storage for a variety of committed states, relative to a preindustrial baseline, and to attribute the drivers of uncertainty. Using a subset of simulations, the committed changes in these variables post-2100, assuming climate stabilization, were calculated. The results show large committed changes in tree cover and carbon storage, with model disparities driven by residence time in the tropics, and residence time and productivity in the boreal. Large changes remain ongoing well beyond the end of the 21st century. In boreal ecosystems, the simulated increase in vegetation carbon storage above preindustrial levels was 20–95 Pg C at 2 K of warming, and 45–201 Pg C at 5 K, of which 38–155 Pg C was due to expansion in tree cover. Reducing the large uncertainties in long-term commitment and rate-of-change of terrestrial carbon uptake will be crucial for assessments of emissions budgets consistent with limiting climate change. ©2018. The Authors.

Details

show
hide
Language(s): eng - English
 Dates: 2018-09-122018-102018-10
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1029/2018EF000935
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Earth's Future
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: John Wiley and Sons Inc
Pages: - Volume / Issue: 6 Sequence Number: - Start / End Page: 1413 - 1432 Identifier: ISSN: 23284277