English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Mathematical framework for testing wiring specificity in cortical connectomes

Udvary, D., Dercksen, V., Egger, R., De Kock, C., Sakmann, B., & Oberlaender, M. (2018). Mathematical framework for testing wiring specificity in cortical connectomes. Poster presented at 48th Annual Meeting of the Society for Neuroscience (Neuroscience 2018), San Diego, CA, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Udvary, D, Author           
Dercksen, VJ, Author
Egger, R1, Author           
De Kock, CPJ, Author
Sakmann, B, Author
Oberlaender, M, Author           
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We present a mathematical framework for formulating and testing rules of synaptic organization on both sparse and dense connectomics data. Our approaches will make it possible to implement hypotheses of synaptic organization in terms of mathematically formulated rules. We generated a structurally dense model of the rat barrel cortex and formulated a null hypothesis rule that synaptic wiring is based on axo-dendritic overlap. This null hypothesis states that synapses form (1) proportional to the locally available pre- and postsynaptic target structures, (2) locally random and (3) globally independent. The rule predicts distributions of pair-wise connectivity that are non-Gaussian and non-Poisson. We show that (sparse) pair-wise connectivity measurements obtained with different experimental methods cannot reject the null hypothesis. The rule predicts a wide range of 2nd and higher order connectivity patterns. These predictions can be used in the future to reject the null hypothesis and to identify wiring specificity that cannot be explained by axo-dendritic overlap. The framework will make it possible to (1) interpret sparse or dense connectivity measurements in a rule-based context, (2) identify which structural features are predictive of synaptic connections, (3) quantify how well a connectivity rule is constrained by data and (4) provide unbiased statistical tools for determining which set of rules is most consistent with empirical data.

Details

show
hide
Language(s):
 Dates: 2018-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: -

Event

show
hide
Title: 48th Annual Meeting of the Society for Neuroscience (Neuroscience 2018)
Place of Event: San Diego, CA, USA
Start-/End Date: 2018-11-03 - 2018-11-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: 48th Annual Meeting of the Society for Neuroscience (Neuroscience 2018)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 480.02 Start / End Page: - Identifier: -