日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

登録内容を編集ファイル形式で保存
 
 
ダウンロード電子メール
  Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction.

Vorberg, S., Seemayer, S., & Söding, J. (2018). Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction. PLoS Computational Biology, 14(11):. doi:10.1371/journal.pcbi.1006526.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0002-7132-6 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000B-4FD4-E
資料種別: 学術論文

ファイル

表示: ファイル
非表示: ファイル
:
3007535.pdf (出版社版), 2MB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0002-AF66-7
ファイル名:
3007535.pdf
説明:
-
OA-Status:
Gold
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
:
3007535_Suppl.pdf (付録資料), 48KB
ファイルのパーマリンク:
https://hdl.handle.net/21.11116/0000-0002-AF67-6
ファイル名:
3007535_Suppl.pdf
説明:
-
OA-Status:
Not specified
閲覧制限:
公開
MIMEタイプ / チェックサム:
application/pdf / [MD5]
技術的なメタデータ:
著作権日付:
-
著作権情報:
-
CCライセンス:
-

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Vorberg, S.1, 著者           
Seemayer, S., 著者
Söding, J.1, 著者           
所属:
1Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1933286              

内容説明

表示:
非表示:
キーワード: -
 要旨: Compensatory mutations between protein residues in physical contact can manifest themselves as statistical couplings between the corresponding columns in a multiple sequence alignment (MSA) of the protein family. Conversely, large coupling coefficients predict residues contacts. Methods for de-novo protein structure prediction based on this approach are becoming increasingly reliable. Their main limitation is the strong systematic and statistical noise in the estimation of coupling coefficients, which has so far limited their application to very large protein families. While most research has focused on improving predictions by adding external information, little progress has been made to improve the statistical procedure at the core, because our lack of understanding of the sources of noise poses a major obstacle. First, we show theoretically that the expectation value of the coupling score assuming no coupling is proportional to the product of the square roots of the column entropies, and we propose a simple entropy bias correction (EntC) that subtracts out this expectation value. Second, we show that the average product correction (APC) includes the correction of the entropy bias, partly explaining its success. Third, we have developed CCMgen, the first method for simulating protein evolution and generating realistic synthetic MSAs with pairwise statistical residue couplings. Fourth, to learn exact statistical models that reliably reproduce observed alignment statistics, we developed CCMpredPy, an implementation of the persistent contrastive divergence (PCD) method for exact inference. Fifth, we demonstrate how CCMgen and CCMpredPy can facilitate the development of contact prediction methods by analysing the systematic noise contributions from phylogeny and entropy. Using the entropy bias correction, we can disentangle both sources of noise and find that entropy contributes roughly twice as much noise as phylogeny.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2018-11-05
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1371/journal.pcbi.1006526
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: PLoS Computational Biology
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: 25 巻号: 14 (11) 通巻号: e1006526 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -