Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Eliminating deformation incompatibility in composites by gradient nanolayer architectures

Li, J., Lu, W., Gibson, J. S., Zhang, S., Chen, T., Korte-Kerzel, S., et al. (2018). Eliminating deformation incompatibility in composites by gradient nanolayer architectures. Scientific Reports, 8(1): 16216. doi:10.1038/s41598-018-34369-9.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
s41598-018-34369-9.pdf (Verlagsversion), 3MB
Name:
s41598-018-34369-9.pdf
Beschreibung:
Open Access
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Li, Jianjun1, 2, 3, Autor           
Lu, Wenjun4, Autor           
Gibson, James S.K.L.1, Autor           
Zhang, Siyuan5, Autor           
Chen, Tianyu6, Autor           
Korte-Kerzel, Sandra7, Autor           
Raabe, Dierk1, Autor           
Affiliations:
1Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
2College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan 410083, China, ou_persistent22              
3State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, Hunan 410083, China, ou_persistent22              
4Materials Science of Mechanical Contracts, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2324693              
5Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
6Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China, ou_persistent22              
7Institut für Metallkunde und Metallphysik, RWTH Aachen University, Aachen 52074, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Composite materials usually possess a severe deformation incompatibility between the soft and hard phases. Here, we show how this incompatibility problem is overcome by a novel composite design. A gradient nanolayer-structured Cu-Zr material has been synthesized by magnetron sputtering and tested by micropillar compression. The interface spacing between the alternating Cu and Zr nanolayers increases gradually by one order of magnitude from 10 nm at the surface to 100 nm in the centre. The interface spacing gradient creates a mechanical gradient in the depth direction, which generates a deformation gradient during loading that accumulates a substantial amount of geometrically necessary dislocations. These dislocations render the component layers of originally high mechanical contrast compatible. As a result, we revealed a synergetic mechanical response in the material, which is characterized by fully compatible deformation between the constituent Cu and Zr nanolayers with different thicknesses, resulting in a maximum uniform layer strain of up to 60 in the composite. The deformed pillars have a smooth surface, validating the absence of deformation incompatibility between the layers. The joint deformation response is discussed in terms of a micromechanical finite element simulation.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-11-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41598-018-34369-9
BibTex Citekey: Li201816216
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Scientific Reports
  Kurztitel : Sci. Rep.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London, UK : Nature Publishing Group
Seiten: 9 Band / Heft: 8 (1) Artikelnummer: 16216 Start- / Endseite: - Identifikator: ISSN: 2045-2322
CoNE: https://pure.mpg.de/cone/journals/resource/2045-2322