English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Classification of gravitational-wave glitches via dictionary learning

Llorens-Monteagudo, M., Torres-Forne, A., Font, J. A., & Marquina, A. (2019). Classification of gravitational-wave glitches via dictionary learning. Classical and quantum gravity, 36(7): 075005. doi:10.1088/1361-6382/ab0657.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/21.11116/0000-0002-A575-0 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-3A52-0
Genre: Journal Article

Files

show Files
hide Files
:
1811.03867.pdf (Preprint), 770KB
Name:
1811.03867.pdf
Description:
File downloaded from arXiv at 2018-12-11 08:48
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Llorens-Monteagudo, Miquel, Author
Torres-Forne, Alejandro1, Author              
Font, José A., Author
Marquina, Antonio, Author
Affiliations:
1Computational Relativistic Astrophysics, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_2541714              

Content

show
hide
Free keywords: Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM,General Relativity and Quantum Cosmology, gr-qc
 Abstract: We present a new method for the classification of transient noise signals (or glitches) in advanced gravitational-wave interferometers. The method uses learned dictionaries (a supervised machine learning algorithm) for signal denoising, and untrained dictionaries for the final sparse reconstruction and classification. We use a data set of 3000 simulated glitches of three different waveform morphologies, comprising 1000 glitches per morphology. These data are embedded in non-white Gaussian noise to simulate the background noise of advanced LIGO in its broadband configuration. Our classification method yields a 96% accuracy for a large range of initial parameters, showing that learned dictionaries are an interesting approach for glitch classification. This work constitutes a preliminary step before assessing the performance of dictionary-learning methods with actual detector glitches.

Details

show
hide
Language(s):
 Dates: 2018-11-092019
 Publication Status: Published in print
 Pages: 19 pages, 13 figues
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1811.03867
URI: http://arxiv.org/abs/1811.03867
DOI: 10.1088/1361-6382/ab0657
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and quantum gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 36 (7) Sequence Number: 075005 Start / End Page: - Identifier: -