Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Counting Solutions of a Polynomial System Locally and Exactly

Becker, R., & Sagraloff, M. (2017). Counting Solutions of a Polynomial System Locally and Exactly. Retrieved from http://arxiv.org/abs/1712.05487.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1712.05487.pdf (Preprint), 2MB
Name:
arXiv:1712.05487.pdf
Beschreibung:
File downloaded from arXiv at 2018-12-13 13:43
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Becker, Ruben1, Autor           
Sagraloff, Michael1, Autor           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Symbolic Computation, cs.SC,Computer Science, Numerical Analysis, cs.NA,Mathematics, Numerical Analysis, math.NA
 Zusammenfassung: We propose a symbolic-numeric algorithm to count the number of solutions of a
polynomial system within a local region. More specifically, given a
zero-dimensional system $f_1=\cdots=f_n=0$, with
$f_i\in\mathbb{C}[x_1,\ldots,x_n]$, and a polydisc
$\mathbf{\Delta}\subset\mathbb{C}^n$, our method aims to certify the existence
of $k$ solutions (counted with multiplicity) within the polydisc.
In case of success, it yields the correct result under guarantee. Otherwise,
no information is given. However, we show that our algorithm always succeeds if
$\mathbf{\Delta}$ is sufficiently small and well-isolating for a $k$-fold
solution $\mathbf{z}$ of the system.
Our analysis of the algorithm further yields a bound on the size of the
polydisc for which our algorithm succeeds under guarantee. This bound depends
on local parameters such as the size and multiplicity of $\mathbf{z}$ as well
as the distances between $\mathbf{z}$ and all other solutions. Efficiency of
our method stems from the fact that we reduce the problem of counting the roots
in $\mathbf{\Delta}$ of the original system to the problem of solving a
truncated system of degree $k$. In particular, if the multiplicity $k$ of
$\mathbf{z}$ is small compared to the total degrees of the polynomials $f_i$,
our method considerably improves upon known complete and certified methods.
For the special case of a bivariate system, we report on an implementation of
our algorithm, and show experimentally that our algorithm leads to a
significant improvement, when integrated as inclusion predicate into an
elimination method.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-12-142017
 Publikationsstatus: Online veröffentlicht
 Seiten: 40 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1712.05487
URI: http://arxiv.org/abs/1712.05487
BibTex Citekey: Becker_arXiv1712.05487
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: