Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Deep Learning for Nonadiabatic Excited-State Dynamics

Chen, W.-K., Liu, X.-Y., Fang, W.-H., Dral, P. O., & Cui, G. (2018). Deep Learning for Nonadiabatic Excited-State Dynamics. The Journal of Physical Chemistry Letters, 9(23), 6702-6708. doi:10.1021/acs.jpclett.8b03026.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Chen, Wen-Kai1, Autor
Liu, Xiang-Yang1, Autor
Fang, Wei-Hai1, Autor
Dral, Pavlo O.2, Autor           
Cui, Ganglong1, Autor
Affiliations:
1Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China, ou_persistent22              
2Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: In this work we show that deep learning (DL) can be used for exploring complex and highly nonlinear multistate potential energy surfaces of polyatomic molecules and related nonadiabatic dynamics. Our DL is based on deep neural networks (DNNs), which are used as accurate representations of the CASSCF ground- and excited-state potential energy surfaces (PESs) of CH2NH. After geometries near conical intersection are included in the training set, the DNN models accurately reproduce excited-state topological structures; photoisomerization paths; and, importantly, conical intersections. We have also demonstrated that the results from nonadiabatic dynamics run with the DNN models are very close to those from the dynamics run with the pure ab initio method. The present work should encourage further studies of using machine learning methods to explore excited-state potential energy surfaces and nonadiabatic dynamics of polyatomic molecules.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2018-10-012018-11-072018-11-072018-12-06
 Publikationsstatus: Erschienen
 Seiten: 7
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jpclett.8b03026
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: The Journal of Physical Chemistry Letters
  Kurztitel : J. Phys. Chem. Lett.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 9 (23) Artikelnummer: - Start- / Endseite: 6702 - 6708 Identifikator: CoNE: https://pure.mpg.de/cone/journals/resource/1948-7185