Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Markerless tracking of user-defined anatomical features with deep learning

Mathis, A., Mamidanna, P., Abe, T., Cury, K., Murthy, V., Mathis, M., et al. (2018). Markerless tracking of user-defined anatomical features with deep learning. Poster presented at CSF Conference: Hand, Brain and Technology: The Somatosensory System (HBT 2018), Monte Verità, Switzerland.

Item is

Urheber

einblenden:
ausblenden:
 Urheber:
Mathis, A, Autor
Mamidanna, P, Autor
Abe, T, Autor
Cury, KM, Autor
Murthy, VM, Autor
Mathis, MW, Autor
Bethge, M1, 2, Autor           
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Quantifying behavior is crucial for many applications in neuroscience. Videography provides easy methods for the observation and recording of animal behavior in diverse settings, yet extracting particular aspects of a behavior for further analysis can be highly time consuming. In motor control studies, humans or other animals are often marked with reflective markers to assist with computer-based
tracking, yet markers are intrusive (especially for smaller animals), and the number and location of the markers must be determined a priori. We present a highly efficient method for markerless tracking based on transfer learning with deep neural networks that achieves excellent results with minimal training data. We demonstrate the versatility of this framework by tracking various body parts in a broad collection of experimental settings: mice odor trail-tracking, egg-laying behavior in drosophila, and mouse hand
articulation in a skilled forelimb task. For example, during the skilled reaching behavior, individual joints
can be automatically tracked (and a confidence score is reported). Remarkably, even when a small number of frames are labeled, the algorithm achieves excellent tracking performance on test frames that is comparable to human accuracy.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2018-08
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: CSF Conference: Hand, Brain and Technology: The Somatosensory System (HBT 2018)
Veranstaltungsort: Monte Verità, Switzerland
Start-/Enddatum: 2018-08-26 - 2018-08-31

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: CSF Conference: Hand, Brain and Technology: The Somatosensory System (HBT 2018)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: D05P Start- / Endseite: 97 Identifikator: -