Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids

Zhu, L., Schrobsdorff, H., Schneider, T. M., & Xi, L. (2018). Distinct transition in flow statistics and vortex dynamics between low- and high-extent turbulent drag reduction in polymer fluids. Journal of Non-Newtonian Fluid Mechanics, 262, 115-130. doi:10.1016/j.jnnfm.2018.03.017.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhu, L., Autor
Schrobsdorff, Hecke1, Autor           
Schneider, T. M., Autor
Xi, L., Autor
Affiliations:
1Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063286              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Turbulent flows; Viscoelasticity; Coherent structures; Vortex regeneration; Bursting
 Zusammenfassung: Flexible polymer additives are known to reduce the energy dissipation and friction drag in turbulent flows. As the fluid elasticity increases, the flow undergoes several stages of transitions. Much attention in the area has been focused on the onset of drag reduction (DR) and the eventual convergence to the maximum drag reduction (MDR) asymptote. Between the onset and MDR, recent experimental and numerical observations prompted the need to further distinguish the low- and high-extent drag reduction (LDR and HDR). Fundamental knowledge of this transition will be important for understanding turbulent dynamics in the presence of polymers, as well as for inspiring new flow control strategies for efficient friction reduction. We use direct numerical simulation (DNS) to explore all these transitions in the parameter space and, in particular, demonstrate that the LDR HDR transition is not merely a quantitative effect of the level of drag reduction, but a qualitative transition into a different stage of turbulence. A number of sharp changes in flow statistics are found to accompany the transition and at HDR, turbulence becomes localized with vortices forming clusters. These observations suggest that polymer-induced drag reduction follows two distinct stages. The first starts at the onset of drag reduction, where the coil-stretch transition of polymers causes an overall suppression of turbulent fluctuations. The second starts at the LDR HDR transition, where flow statistics become fundamentally changed in the log-law layer and turbulence localization is observed. A mechanism is then proposed for the latter based on the changing vortex regeneration dynamics between LDR and HDR.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-03-272018-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.jnnfm.2018.03.017
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Non-Newtonian Fluid Mechanics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 262 Artikelnummer: - Start- / Endseite: 115 - 130 Identifikator: -