Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens

Lloyd, K., & Dayan, P. (2015). Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens. PLoS Computational Biology, 11(12): e1004622. doi:10.1371/journal.pcbi.1004622.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Lloyd, K1, Autor                 
Dayan, P1, Autor           
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a) the resolution of uncertainty about the timing of action; (b) the direct influence of dopamine over mechanisms associated with making choices; and (c) a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

Details

ausblenden:
Sprache(n):
 Datum: 2015-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1004622
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: PLoS Computational Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: 34 Band / Heft: 11 (12) Artikelnummer: e1004622 Start- / Endseite: - Identifikator: ISSN: 1553-734X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000017180_1