日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Data Visualization using Linear and Non-linear Dimensionality Reduction Methods

Kim, J., & Youn, J.-S. (2018). Data Visualization using Linear and Non-linear Dimensionality Reduction Methods. Journal of the Korea Society of Computer and Information, 23(12):, pp. 21-26. doi:10.9708/jksci.2018.23.12.021.

Item is

基本情報

表示: 非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-0002-C701-C 版のパーマリンク: https://hdl.handle.net/21.11116/0000-0002-C704-9
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Kim, J1, 2, 著者           
Youn, J-S, 著者
所属:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

内容説明

表示:
非表示:
キーワード: -
 要旨: As the large amount of data can be efficiently stored, the methods extracting meaningful features from big data has become important. Especially, the techniques of converting high- to low-dimensional data are crucial for the ’Data visualization’. In this study, principal component analysis (PCA; linear dimensionality reduction technique) and Isomap (non-linear dimensionality reduction technique) are introduced and applied to neural big data obtained by the functional magnetic resonance imaging (fMRI). First, we investigate how much the physical properties of stimuli are maintained after the dimensionality reduction processes. We moreover compared the amount of residual variance to quantitatively compare the amount of information that was not explained. As result, the dimensionality reduction using Isomap contains more information than the principal component analysis. Our results demonstrate that it is necessary to consider not only linear but also nonlinear characteristics in the big data analysis.

資料詳細

表示:
非表示:
言語:
 日付: 2018-12
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.9708/jksci.2018.23.12.021
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of the Korea Society of Computer and Information
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 23 (12) 通巻号: 177 開始・終了ページ: 21 - 26 識別子(ISBN, ISSN, DOIなど): ISSN: 1598-849X